Skip to main content

Modulation of the Coagulation System During Severe Streptococcal Disease

  • Chapter
  • First Online:
Host-Pathogen Interactions in Streptococcal Diseases

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 368))

Abstract

Haemostasis is maintained by a tightly regulated coagulation system that comprises platelets, procoagulant proteins, and anticoagulant proteins. During the local and systemic response to bacterial infection, the coagulation system becomes activated, and contributes to the pathophysiological response to infection. The significant human pathogen, Streptococcus pyogenes has multiple strategies to modulate coagulation. This can range from systemic activation of the intrinsic and extrinsic pathway of coagulation to local stimulation of fibrinolysis. Such diverse effects on this host system imply a finely tuned host–bacteria interaction. The molecular mechanisms that underlie this modulation of the coagulation system are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashbaugh CD, Warren HB, Carey VJ, Wessels MR (1998) Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J Clin Invest 102:550–560

    Article  PubMed  CAS  Google Scholar 

  • Barker FG, Leppard BJ, Seal DV (1987) Streptococcal necrotising fasciitis: comparison between histological and clinical features. J Clin Pathol 40:335–341

    Article  PubMed  CAS  Google Scholar 

  • Ben Nasr A, Wistedt A, Ringdahl U, Sjöbring U (1994) Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur J Biochem 222:267–276

    Article  PubMed  CAS  Google Scholar 

  • Ben Nasr AB, Herwald H, Müller-Esterl W, Björck L (1995) Human kininogens interact with M protein, a bacterial surface protein and virulence determinant. Biochem J 305:173–180

    PubMed  CAS  Google Scholar 

  • Ben Nasr A, Herwald H, Sjöbring U, Renné T, Müller-Esterl W, Björck L (1997) Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin. Biochem J 326:657–660

    PubMed  CAS  Google Scholar 

  • Bengtson SH, Sandén C, Mörgelin M, Marx PF, Olin AI, Leeb-Lundberg LMF, Meijers JCM, Herwald H (2009) Activation of TAFI on the surface of Streptococcus pyogenes evokes inflammatory reactions by modulating the kallikrein/kinin system. J Innate Immun 1:18–28

    Article  PubMed  CAS  Google Scholar 

  • Berge A, Björck L (1995) Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J Biol Chem 270:9862–9867

    Article  PubMed  CAS  Google Scholar 

  • Berge A, Sjöbring U (1993) PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem 268:25417–25424

    PubMed  CAS  Google Scholar 

  • Boxrud PD, Fay WP, Bock PE (2000) Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen. J Biol Chem 275:14579–14589

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  PubMed  CAS  Google Scholar 

  • Broder CC, Lottenberg R, von Mering GO, Johnston KH, Boyle MD (1991) Isolation of a prokaryotic plasmin receptor. Relationship to a plasminogen activator produced by the same micro-organism. J Biol Chem 266:4922–4928

    PubMed  CAS  Google Scholar 

  • Brosnahan AJ, Schlievert PM (2011) Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. FEBS J 278:4649–4667

    Article  PubMed  CAS  Google Scholar 

  • Bryant AE, Hayes-Schroer SM, Stevens DL (2003) M type 1 and 3 group A streptococci stimulate tissue factor-mediated procoagulant activity in human monocytes and endothelial cells. Infect Immun 71:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Bryant AE, Bayer CR, Chen RYZ, Guth PH, Wallace RJ, Stevens DL (2005) Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 192:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Castellino F (1979) Unique enzyme-protein substrate modifier reaction—plasmin-streptokinase interaction. Trends Biochem Sci 4:1–5

    Article  CAS  Google Scholar 

  • Christensen L, MacCleod CM (1945) A proteolytic enzyme of serum—characterization, activation, and reaction with inhibitors. J Gen Physiol 28:559–583

    Article  PubMed  CAS  Google Scholar 

  • Christner R, Li Z, Raeder R, Podbielski A, Boyle MD (1997) Identification of key gene products required for acquisition of plasmin-like enzymatic activity by group A streptococci. J Infect Dis 175:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Clawsson CC, White JG (1971) Platelet interaction with bacteria I. Am J Pathol 65(2):1–14

    Google Scholar 

  • Cole JN (2006) Trigger for group A streptococcal M1T1 invasive disease. FASEB J 20:1745–1747

    Article  PubMed  CAS  Google Scholar 

  • Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Publ Group 9:724–736

    CAS  Google Scholar 

  • Cox D, Kerrigan SW, Watson SP (2011) Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 9:1097–1107

    Google Scholar 

  • D’Costa SS, Romer TG, Boyle MDP (2000) Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem Biophys Res Commun 278:826–832

    Article  PubMed  Google Scholar 

  • de Jong HK, van der Poll T, Wiersinga WJ (2010) The systemic pro-inflammatory response in sepsis. J Innate Immun 2:422–430

    Article  PubMed  Google Scholar 

  • de la Cadena RA, Laskin KJ, Pixley RA, Sartor RB, Schwab JH, Bedi GS, Colman RW (1991) Role of kallikrein-kinin system in pathogenesis of bacterial cell wall-induced inflammation. Am J Physiol 260:213–219

    Google Scholar 

  • Esmon CT, Mather T (1998) Switching serine protease specificity. Nat Struct Biol 5:933–937

    Article  PubMed  CAS  Google Scholar 

  • Fein AM, Bernard GR, Criner GJ, Fletcher EC, Good JT, Knaus WA, Levy H, Matuschak GM, Shanies HM, Taylor RW et al (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277:482–487

    Article  PubMed  CAS  Google Scholar 

  • Frick I-M, Akesson P, Herwald H, Mörgelin M, Malmsten M, Nägler DK, Björck L (2006) The contact system–a novel branch of innate immunity generating antibacterial peptides. EMBO J 25:5569–5578

    Article  PubMed  CAS  Google Scholar 

  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885

    Article  PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (1988) The molecular basis of blood coagulation. Cell 53:505–518

    Article  PubMed  CAS  Google Scholar 

  • Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 23:379–385

    Article  PubMed  CAS  Google Scholar 

  • Herwald H, Cramer H, Mörgelin M, Russell W, Sollenberg U, Norrby-Teglund A, Flodgaard H, Lindbom L, Björck L (2004) M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116:367–379

    Article  PubMed  CAS  Google Scholar 

  • Hess JL, Boyle MDP (2006) Fibrinogen fragment D is necessary and sufficient to anchor a surface plasminogen-activating complex in Streptococcus pyogenes. Proteomics 6:375–378

    Article  PubMed  CAS  Google Scholar 

  • Hoffman M (2003) A cell-based model of coagulation and the role of factor VIIa. Blood Rev 17(Suppl 1):S1–S5

    Article  PubMed  Google Scholar 

  • Igonin AA, Protsenko DN, Galstyan GM, Vlasenko AV, Khachatryan NN, Nekhaev IV, Shlyapnikov SA, Lazareva NB, Herscu P (2012) C1-esterase inhibitor infusion increases survival rates for patients with sepsis*. Crit Care Med 40:770–777

    Article  PubMed  CAS  Google Scholar 

  • Ikebe T, Endoh M, Watanabe H (2005) Increased expression of the ska gene in emm49-genotyped Streptococcus pyogenes strains isolated from patients with severe invasive streptococcal infections. Japan J Infect Dis 58:272–275

    CAS  Google Scholar 

  • Johansson D, Shannon O, Rasmussen M (2011) Platelet and neutrophil responses to gram positive pathogens in patients with bacteremic infection. PLoS One 6:e26928

    Article  PubMed  CAS  Google Scholar 

  • Khil J, Im M, Heath A, Ringdahl U, Mundada L, Cary Engleberg N, Fay WP (2003) Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J Infect Dis 188:497–505

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  PubMed  Google Scholar 

  • Kurpiewski GE, Forrester LJ, Campbell BJ, Barrett JT (1983) Platelet aggregation by Streptococcus pyogenes. Infect Immun 39:704–708

    PubMed  CAS  Google Scholar 

  • Kuusela P, Ullberg M, Saksela O, Kronvall G (1992) Tissue-type plasminogen activator-mediated activation of plasminogen on the surface of group-A, group-C, and group-G streptococci. Infect Immun 60:196–201

    PubMed  CAS  Google Scholar 

  • Lähteenmäki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552

    PubMed  Google Scholar 

  • Lamagni TL, Darenberg J, Luca-Harari B, Siljander T, Efstratiou A, Henriques-Normark B, Vuopio-Varkila J, Bouvet A, Creti R, Ekelund K et al (2008) Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 46:2359–2367

    Article  PubMed  Google Scholar 

  • Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ploplis VA, French EL, Boyle MD (1999) Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 179:907–914

    Article  PubMed  CAS  Google Scholar 

  • Linder A, Johansson L, Thulin P, Hertzén E, Mörgelin M, Christensson B, Björck L, Norrby-Teglund A, Akesson P (2010) Erysipelas caused by group A streptococcus activates the contact system and induces the release of heparin-binding protein. J Invest Dermatol 130:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Loof TG, Mörgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, Norrby-Teglund A, Theopold U, Herwald H (2011a) Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 118:2589–2598

    Article  PubMed  CAS  Google Scholar 

  • Loof TG, Schmidt O, Herwald H, Theopold U (2011b) Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun 3:34–40

    Article  PubMed  CAS  Google Scholar 

  • Lorente JA, García-Frade LJ, Landín L, de Pablo R, Torrado C, Renes E, García-Avello A (1993) Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 103:1536–1542

    Article  PubMed  CAS  Google Scholar 

  • Lottenberg R, Broder CC, Boyle MD, Kain SJ, Schroeder BL, Curtiss R (1992) Cloning, sequence-analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 174:5204–5210

    PubMed  CAS  Google Scholar 

  • Marcum JA, Kline DL (1983) Species specificity of streptokinase. Comp Biochem Physiol B Comp Biochem 75:389–394

    Article  CAS  Google Scholar 

  • Massberg S, Grahl L, von Bruehl M-L, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–896

    Article  PubMed  CAS  Google Scholar 

  • Mattsson E, Herwald H, Cramer H, Persson K, Sjöbring U, Björck L (2001) Staphylococcus aureus induces release of bradykinin in human plasma. Infect Immun 69:3877–3882

    Article  PubMed  CAS  Google Scholar 

  • Mavrommatis AC, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S (2000) Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med 28:451–457

    Article  PubMed  CAS  Google Scholar 

  • McKay FC, Mcarthur JD, Sanderson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, Fagan PK, Towers RJ, Batzloff MR, Chhatwal GS et al (2004) Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infection and a high incidence of invasive infection. Infect Immun 72:364–370

    Article  PubMed  CAS  Google Scholar 

  • Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91:931–972

    Article  PubMed  CAS  Google Scholar 

  • Oehmcke S, Herwald H (2010) Contact system activation in severe infectious diseases. J Mol Med 88:121–126

    Article  PubMed  CAS  Google Scholar 

  • Oehmcke SM, Ouml rgelin M, Herwald H (2009a) Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 1:225–230

    Article  Google Scholar 

  • Oehmcke S, Shannon O, von Köckritz-Blickwede M, Mörgelin M, Linder A, Olin AI, Björck L, Herwald H (2009b) Treatment of invasive streptococcal infection with a peptide derived from human high-molecular weight kininogen. Blood 114:444–451

    Article  CAS  Google Scholar 

  • Oehmcke S, Shannon O, Mörgelin M, Herwald H (2010) Streptococcal M proteins and their role as virulence determinants. Clin Chim Acta 411:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • Oehmcke S, Mörgelin M, Malmström J, Linder A, Chew M, Thorlacius H, Herwald H (2012) Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol 14:107–119

    Article  PubMed  CAS  Google Scholar 

  • Opal SM, Esmon CT (2003) Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 7:23–38

    Article  PubMed  Google Scholar 

  • PÃ¥hlman LI, Mörgelin M, Eckert J, Johansson L, Russell W, Riesbeck K, Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR et al (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177:1221–1228

    PubMed  Google Scholar 

  • PÃ¥hlman LI, Malmström E, Mörgelin M, Herwald H (2007) M protein from Streptococcus pyogenes induces tissue factor expression and pro-coagulant activity in human monocytes. Microbiology (Reading, Engl) 153:2458–2464

    Google Scholar 

  • Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426

    Article  PubMed  CAS  Google Scholar 

  • Pancholi V, Fischetti VA (1998) Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    Article  PubMed  CAS  Google Scholar 

  • Poon IKH, Patel KK, Davis DS, Parish CR, Hulett MD (2011) Histidine-rich glycoprotein: the Swiss army knife of mammalian plasma. Blood 117:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Pu Q, Wiel E, Corseaux D, Bordet R, Azrin MA, Ezekowitz MD, Lund N, Jude B, Vallet B (2001) Beneficial effect of glycoprotein IIb/IIIa inhibitor (AZ-1) on endothelium in Escherichia coli endotoxin-induced shock. Crit Care Med 29:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Renné T (2012) The procoagulant and proinflammatory plasma contact system. Semin Immunopathol 34:31–41

    Article  PubMed  Google Scholar 

  • Rezcallah MS, Boyle MDP, Sledjeski DD (2004) Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity. Microbiology (Reading, Engl) 150:365–371

    Google Scholar 

  • Sanderson-Smith ML, Walker MJ, Ranson M (2006) The maintenance of high affinity plasminogen binding by group A streptococcal plasminogen-binding M-like protein is mediated by arginine and histidine residues within the a1 and a2 repeat domains. J Biol Chem 281:25965–25971

    Article  PubMed  CAS  Google Scholar 

  • Sanderson-Smith ML, Dowton M, Ranson M, Walker MJ (2007) The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 189:1435–1440

    Article  PubMed  CAS  Google Scholar 

  • Semeraro N, Ammollo CT, Semeraro F, Colucci M (2012) Sepsis, thrombosis and organ dysfunction. Thromb Res 129:290–295

    Article  PubMed  CAS  Google Scholar 

  • Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Google Scholar 

  • Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L (2007) Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 65:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Shannon O, RydengÃ¥rd V, Schmidtchen A, Mörgelin M, Alm P, Sørensen OE, Björck L (2010) Histidine-rich glycoprotein promotes bacterial entrapment in clots and decreases mortality in a mouse model of sepsis. Blood 116:2365–2372

    Article  PubMed  CAS  Google Scholar 

  • Sjöbring U, Ringdahl U, Ruggeri ZM (2002) Induction of platelet thrombi by bacteria and antibodies. Blood 100:4470–4477

    Article  PubMed  Google Scholar 

  • Smith SA (2009) The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio) 19:3–10

    Article  Google Scholar 

  • Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet Colloquium Participants. Platelet functions beyond hemostasis. J Thromb Haemost 7:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Soehnlein O, Oehmcke S, Ma X, Rothfuchs AG, Frithiof R, van Rooijen N, Mörgelin M, Herwald H, Lindbom L (2008) Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 32:405–412

    Article  PubMed  CAS  Google Scholar 

  • Sriskandan S, Kemball-Cook G, Moyes D, Canvin J, Tuddenham E, Cohen J (2000) Contact activation in shock caused by invasive group A Streptococcus pyogenes. Crit Care Med 28:3684–3691

    Article  PubMed  CAS  Google Scholar 

  • Stadnicki A, de la Cadena RA, Sartor RB, Bender D, Kettner CA, Rath HC, Adam A, Colman RW (1996) Selective plasma kallikrein inhibitor attenuates acute intestinal inflammation in Lewis rat. Dig Dis Sci 41:912–920

    Article  PubMed  CAS  Google Scholar 

  • Sun H (2004) Plasminogen is a critical host pathogenicity factor for group A streptococcal Infection. Science 305:1283–1286

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Wang X, Degen JL, Ginsburg D (2009) Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 113:1358–1364

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Xu Y, Sitkiewicz I, Ma Y, Wang X, Yestrepsky BD, Huang Y, Lapadatescu MC, Larsen MJ, Larsen SD et al (2012) Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci USA 109:3469–3474

    Article  PubMed  CAS  Google Scholar 

  • Svensson MD, Sjöbring U, Bessen DE (1999) Selective distribution of a high-affinity plasminogen-binding site among group A streptococci associated with impetigo. Infect Immun 67:3915–3920

    PubMed  CAS  Google Scholar 

  • Svensson MD, Sjöbring U, Luo F, Bessen DE (2002) Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiology (Reading, Engl) 148:3933–3945

    Google Scholar 

  • Takada Y, Takada A (1989) Evidence for the formation of a trimolecular complex between streptokinase plasminogen and fibrinogen. Thromb Res 53:409–415

    Article  PubMed  CAS  Google Scholar 

  • Taylor FB, Bryant AE, Blick KE, Hack E, Jansen PM, Kosanke SD, Stevens DL (1999) Staging of the baboon response to group A streptococci administered intramuscularly: a descriptive study of the clinical symptoms and clinical chemical response patterns. Clin Infect Dis 29:167–177

    Article  PubMed  Google Scholar 

  • Tillett WS, Garner RLR (1933) The fibrinolytic activity of hemolytic streptococci. J Exp Med 58:485–502

    Article  PubMed  CAS  Google Scholar 

  • van der Poll T, de Boer JD, Levi M (2011) The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis 24:273–278

    Article  PubMed  Google Scholar 

  • Vandijck DM, Blot S, De Waele Jan J, Hoste EA, Vandewoude KH, Decruyenaere JM (2010) Thrombocytopenia and outcome in critically ill patients with bloodstream infection. Heart Lung J Acute Crit Care 39:21–26

    Article  Google Scholar 

  • Walker M, McArthur J, Mckay F, Ranson M (2005) Is plasminogen deployed as a virulence factor? Trends Microbiol 13:308–313

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lottenberg R, Boyle MD (1995a) Analysis of the interaction of group A streptococci with fibrinogen, streptokinase and plasminogen. Microb Pathog 18:153–166

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lottenberg R, Boyle MDP (1995b) A role for fibrinogen in the streptokinase-dependent acquisition of plasmin(ogen) by group-a streptococci. J Infect Dis 171:85–92

    Article  PubMed  CAS  Google Scholar 

  • Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442

    Article  PubMed  CAS  Google Scholar 

  • Williams SCP (2012) After Xigris, researchers look to new targets to combat sepsis. Nat Publ Group 18:1001

    CAS  Google Scholar 

  • Winning J, Reichel J, Eisenhut Y, Hamacher J, Kohl M, Deigner HP, Claus RA, Bauer M, Lösche W (2009) Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets 20:50–57

    Article  PubMed  CAS  Google Scholar 

  • Winram SB, Lottenberg R (1996) The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology (Reading, Engl) 142:2311–2320

    Google Scholar 

  • Wistedt AC, Ringdahl U, Müller-Esterl W, Sjöbring U (1995) Identification of a plasminogen-binding motif in PAM, a bacterial surface protein. Mol Microbiol 18:569–578

    Article  PubMed  CAS  Google Scholar 

  • Wistedt AC, Kotarsky H, Marti D, Ringdahl U, Castellino FJ, Schaller J, Sjöbring U (1998) Kringle 2 mediates high affinity binding of plasminogen to an internal sequence in streptococcal surface protein PAM. J Biol Chem 273:24420–24424

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev SA, Rublenko MV, Izdepsky VI, Makogonenko EM (1995) Activating effect of the plasminogen activators on plasminogens of different mammalia species. Thromb Res 79:423–428

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oonagh Shannon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shannon, O., Herwald, H., Oehmcke, S. (2012). Modulation of the Coagulation System During Severe Streptococcal Disease. In: Chhatwal, G. (eds) Host-Pathogen Interactions in Streptococcal Diseases. Current Topics in Microbiology and Immunology, vol 368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_283

Download citation

Publish with us

Policies and ethics