Skip to main content

ChIP-Seq and the Complexity of Bacterial Transcriptional Regulation

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 363))

Abstract

Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y (2012) Genomeview: a next-generation genome browser. Nucleic Acids Res 40:e12

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits (Chapman and Hall/CRC)

    Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev 8:450–461

    Article  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV (2010) Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 38:D69–D74

    Article  PubMed  CAS  Google Scholar 

  • Belitsky BR, Sonenshein AL (1999) An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc Nat Acad Sci U S A 96:10290–10295

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc : Ser. B (Methodol) 57:289

    Google Scholar 

  • Blasco B, Stenta M, Alonso-Sarduy L, Dietler G, Peraro MD, Cole ST, Pojer F (2011) Atypical DNA recognition mechanism used by the EspR virulence regulator of Mycobacterium tuberculosis. Mol Microbiol 82:251–264

    Article  PubMed  CAS  Google Scholar 

  • Blasco B, Chen JM, Hartkoorn R, Sala C, Uplekar S, Rougemont J, Pojer F, Cole ST (2012) Virulence regulator EspR of mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog 8:e1002621

    Article  PubMed  Google Scholar 

  • Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65

    Article  PubMed  CAS  Google Scholar 

  • Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13:773–780

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL et al (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18:662–674

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Guo L, Fan Z, Jiang T (2008) W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP–chip data. Bioinformatics 24:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Colangeli R, Helb D, Vilcheze C, Hazbon MH, Lee CG, Safi H, Sayers B, Sardone I, Jones MB, Fleischmann RD et al (2007) Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 3:e87

    Article  PubMed  Google Scholar 

  • Colangeli R, Haq A, Arcus VL, Summers E, Magliozzo RS, McBride A, Mitra AK, Radjainia M, Khajo A, Jacobs WR Jr et al (2009) The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A 106:4414–4418

    Article  PubMed  CAS  Google Scholar 

  • Collado-Vides J, Magasanik B, Gralla JD (1991) Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55:371–394

    PubMed  CAS  Google Scholar 

  • Czaplewski LG, North AK, Smith MC, Baumberg S, Stockley PG (1992) Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol Microbiol 6:267–275

    Article  PubMed  CAS  Google Scholar 

  • Dandanell G, Valentin-Hansen P, Larsen JE, Hammer K (1987) Long-range cooperativity between gene regulatory sequences in a prokaryote. Nature 325:823–826

    Article  PubMed  CAS  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed  CAS  Google Scholar 

  • Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195

    Article  PubMed  CAS  Google Scholar 

  • Dunn TM, Hahn S, Ogden S, Schleif RF (1984) An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc Nat Acad Sci U S A 81:5017–5020

    Article  CAS  Google Scholar 

  • Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev 10:605–616

    Article  CAS  Google Scholar 

  • Flashner Y, Gralla JD (1988) Dual mechanism of repression at a distance in the lac operon. Proc Nat Acad Sci U S A 85:8968–8972

    Article  CAS  Google Scholar 

  • Froula JL, Francino MP (2007) Selection against spurious promoter motifs correlates with translational efficiency across bacteria. PLoS ONE 2:e745

    Article  PubMed  Google Scholar 

  • Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, Reddy TB, Zucker JD, Engels R, Gellesch M et al (2010) TB database 2010: overview and update. Tuberculosis (Edinb) 90:225–235

    Article  Google Scholar 

  • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A et al (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (gensor units). Nucleic Acids Res 39:D98–105

    Article  PubMed  Google Scholar 

  • Gao CH, Yang M, He ZG (2011) An ArsR-like transcriptional factor recognizes a conserved sequence motif and positively regulates the expression of phoP in mycobacteria. Biochem Biophys Res Commun 411:726–731

    Article  PubMed  CAS  Google Scholar 

  • Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457:215–218

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Muller-Hill B (1966) Isolation of the lac repressor. Proc Nat Acad Sci U S A 56:1891–1898

    Article  CAS  Google Scholar 

  • Gomes A et al Decoding ChIPseq with multiple binding events provides site detection with high-resolution and allows estimation of cooperative binding (In Preparation)

    Google Scholar 

  • Gordon BR, Li Y, Wang L, Sintsova A, van Bakel H, Tian S, Navarre WW, Xia B, Liu J (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:5154–5159

    Article  PubMed  CAS  Google Scholar 

  • Hahn S, Hendrickson W, Schleif R (1986) Transcription of escherichia coli ara in vitro. The cyclic AMP receptor protein requirement for PBAD induction that depends on the presence and orientation of the araO2 site. J Mol Biol 188:355–367

    Article  PubMed  CAS  Google Scholar 

  • Huerta AM, Francino MP, Morett E, Collado-Vides J (2006) Selection for unequal densities of sigma70 promoter-like signals in different regions of large bacterial genomes. PLoS Genet 2:e185

    Article  PubMed  Google Scholar 

  • Hunt DM, Sweeney NP, Mori L, Whalan RH, Comas I, Norman L, Cortes T, Arnvig KB, Davis EO, Stapleton MR et al (2012) Long-range transcriptional control of an operon necessary for virulence-critical ESX-1 secretion in Mycobacterium tuberculosis. J Bacteriol 194:2307–2320

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  PubMed  CAS  Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a sum input function prolongs flagella expression in Escherichia coli. Mol Syst Biol 1(2005):0006

    PubMed  Google Scholar 

  • Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Topological generalizations of network motifs. Phys Rev E: Stat, Nonlin, Soft Matter Phys 70:031909

    Article  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, Marzolf B, Van PT, Lo FY et al (2009) Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 5:285

    Article  PubMed  Google Scholar 

  • Lee DH, Schleif RF (1989) In vivo DNA loops in araCBAD: size limits and helical repeat. Proc Nat Acad Sci U S A 86:476–480

    Article  CAS  Google Scholar 

  • Levin A et al (2011) Understanding Blind Deconvolution Algorithms. IEEE transactions on pattern analysis and machine intelligence

    Google Scholar 

  • Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, Hechmer A, Simirenko L, Stapleton M, Luengo Hendriks CL et al (2008) Transcription factors bind thousands of active and inactive regions in the drosophila blastoderm. PLoS Biol 6:e27

    Article  PubMed  Google Scholar 

  • Lobell RB, Schleif RF (1990) DNA looping and unlooping by AraC protein. Science 250:528–532

    Article  PubMed  CAS  Google Scholar 

  • Lobell RB, Schleif RF (1991) AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J Mol Biol 218:45–54

    Article  PubMed  CAS  Google Scholar 

  • Lun DS, Sherrid A, Weiner B, Sherman DR, Galagan JE (2009) A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data. Genome Biol 10:R142

    Article  PubMed  Google Scholar 

  • Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696–1697

    Article  PubMed  CAS  Google Scholar 

  • MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ (2011) Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 27:141–148

    Article  PubMed  CAS  Google Scholar 

  • Madan Babu M, Teichmann SA (2003) Functional determinants of transcription factors in escherichia coli: protein families and binding sites. Trends Genet 19:75–79

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Nat Acad Sci U S A 100:11980–11985

    Article  CAS  Google Scholar 

  • Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol 334:197–204

    Article  PubMed  CAS  Google Scholar 

  • Martin K, Huo L, Schleif RF (1986) The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Nat Acad Sci U S A 83:3654–3658

    Article  CAS  Google Scholar 

  • Mazzoni EO, Mahony S, Iacovino M, Morrison CA, Mountoufaris G, Closser M, Whyte WA, Young RA, Kyba M, Gifford DK et al (2011) Embryonic stem cell-based mapping of developmental transcriptional programs. Nat Methods 8:1056–1058

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Minchin SD, Austin S, Dixon RA (1988) The role of activator binding sites in transcriptional control of the divergently transcribed nifF and nifLA promoters from Klebsiella pneumoniae. Mol Microbiol 2:433–442

    Article  PubMed  CAS  Google Scholar 

  • Mullin DA, Newton A (1993) A sigma 54 promoter and downstream sequence elements ftr2 and ftr3 are required for regulated expression of divergent transcription units flaN and flbG in Caulobacter crescentus. J Bacteriol 175:2067–2076

    PubMed  CAS  Google Scholar 

  • Narang A (2007) Effect of DNA looping on the induction kinetics of the lac operon. J Theor Biol 247:695–712

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Reitzer LJ, Magasanik B (1987) Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Oehler S, Eismann ER, Kramer H, Muller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973–979

    PubMed  CAS  Google Scholar 

  • Oehler S, Alberti S, Muller-Hill B (2006) Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res 34:606–612

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim AV, Willsky AS, Nawab SH (1997) Signals & systems, 2nd edn, Upper Saddle River, NJ: Prentice Hall

    Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  • Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  PubMed  CAS  Google Scholar 

  • Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    Article  PubMed  CAS  Google Scholar 

  • Reitzer LJ, Magasanik B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45:785–792

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff WS, Winter RB, Hurley CK (1974) The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci U S A 71:2314–2318

    Article  PubMed  CAS  Google Scholar 

  • Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419

    Article  PubMed  CAS  Google Scholar 

  • Rimsky S, Travers A (2011) Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 14:136–141

    Article  PubMed  CAS  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007a) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Meth 4:651–657

    Article  CAS  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007b) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg OS, Dovey C, Tempesta M, Robbins RA, Finer-Moore JS, Stroud RM, Cox JS (2011) EspR, a key regulator of Mycobacterium tuberculosis virulence, adopts a unique dimeric structure among helix-turn-helix proteins. Proc Natl Acad Sci U S A 108:13450–13455

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Schleif R (2003) AraC protein: a love-hate relationship. BioEssays : news and reviews in molecular, cellular and developmental biology 25:274–282

    Google Scholar 

  • Setty Y, Mayo AE, Surette MG, Alon U (2003) Detailed map of a cis-regulatory input function. Proc Nat Acad Sci U S A 100:7702–7707

    Article  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  PubMed  CAS  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc B 64:479–498

    Article  Google Scholar 

  • Storey JD (2003) The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat 31:2013–2035

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Nat Acad Sci U S A 100:9440–9445

    Article  CAS  Google Scholar 

  • Tanay A (2006) Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res 16:962–972

    Article  PubMed  CAS  Google Scholar 

  • Ueno-Nishio S, Backman KC, Magasanik B (1983) Regulation at the glnL-operator-promoter of the complex glnALG operon of Escherichia coli. J Bacteriol 153:1247–1251

    PubMed  CAS  Google Scholar 

  • Ueno-Nishio S, Mango S, Reitzer LJ, Magasanik B (1984) Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. J Bacteriol 160:379–384

    PubMed  CAS  Google Scholar 

  • Wang W, Li GW, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Wedel A, Weiss DS, Popham D, Droge P, Kustu S (1990) A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248:486–490

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE 5:e11471

    Article  PubMed  Google Scholar 

  • World Health Organization (2001). Global Tuberculosis Control

    Google Scholar 

  • Galagan J et al Reconstruction of the Mycobacterium tuberculosis regulatory network and deconstruction of the hypoxic response. Nature (Submitted)

    Google Scholar 

  • Zeitlinger J, Zinzen RP, Stark A, Kellis M, Zhang H, Young RA, Levine M (2007) Whole-genome ChIP–chip analysis of dorsal, twist, and snail suggests integration of diverse patterning processes in the drosophila embryo. Genes Dev 21:385–390

    Article  PubMed  CAS  Google Scholar 

  • Zhong M, Niu W, Lu ZJ, Sarov M, Murray JI, Janette J, Raha D, Sheaffer KL, Lam HY, Preston E et al (2010) Genome-wide identification of binding sites defines distinct functions for caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet 6:e1000848

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Galagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galagan, J., Lyubetskaya, A., Gomes, A. (2012). ChIP-Seq and the Complexity of Bacterial Transcriptional Regulation. In: Katze, M. (eds) Systems Biology. Current Topics in Microbiology and Immunology, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_257

Download citation

Publish with us

Policies and ethics