Skip to main content

Production of Recombinant Antigens and Antibodies in Nicotiana benthamiana Using ‘Magnifection’ Technology: GMP-Compliant Facilities for Small- and Large-Scale Manufacturing

  • Chapter
  • First Online:
Plant Viral Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 375))

Abstract

This review describes the adaptation of the plant virus-based transient expression system, magnICON® for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called “deconstructed” viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin’s Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aviezer D, Brill-Almon E et al (2009) A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS One 4(3):e4792

    Article  PubMed  Google Scholar 

  • Bendandi M (2008) Aiming at a curative strategy for follicular lymphoma. CA Cancer J Clin 58(5):305–317

    Article  PubMed  Google Scholar 

  • Bendandi M, Marillonnet S et al (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann Oncol 21(12):2420–2427

    Google Scholar 

  • D’Aoust MA, Lavoie PO et al (2009) Transient expression of antibodies in plants using syringe agroinfiltration. Methods Mol Biol 483:41–50

    Article  PubMed  Google Scholar 

  • D’Aoust MA, Lavoie PO et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6(9):930–940

    Article  PubMed  Google Scholar 

  • Dawson WO, Beck DL et al (1986) cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proc Natl Acad Sci U S A 83(6): 1832–1836

    Article  PubMed  CAS  Google Scholar 

  • De Muynck B, Navarre C et al (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Article  PubMed  Google Scholar 

  • Dean M, Carrington M et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273(5283):1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Donson J, Kearney CM et al (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci U S A 88(16):7204–7208

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Vaquero-Martin C et al (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30 (Pt 2):113–116

    PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E et al (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7(2):152–158

    Article  PubMed  CAS  Google Scholar 

  • Gaertner H, Cerini F et al (2008) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci U S A 105(46):17706–17711

    Article  PubMed  CAS  Google Scholar 

  • Gils M, Kandzia R et al (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotechnol J 3(6):613–620

    Article  PubMed  CAS  Google Scholar 

  • Giritch A, Marillonnet S et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 103(40):14701–14706

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Giritch A (2011) Plant viral vectors for protein expression. Recent advances in plant virology. Carole Caranta MAA, Mark Tepfer and Lopez-Moya JJ. Caister Academic Press, Norfolk, pp 387–412.

    Google Scholar 

  • Gleba Y, Marillonnet S et al (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7(2):182–188

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V et al (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V et al (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18(2):134–141

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Marillonnet S et al (2008) Plant virus vectors (gene expression systems). Enc Virol 3rd edition 4:229–237

    Google Scholar 

  • Goodin MM, Zaitlin D et al (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21(8):1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Goodner B, Hinkle G et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328

    Article  PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J et al (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Pauly M (2006) Monoclonal antibodies from plants: a new speed record. Proc Natl Acad Sci U S A 103(40):14645–14646

    Article  PubMed  CAS  Google Scholar 

  • Hoentjen F, van Bodegraven AA (2009) Safety of anti-tumor necrosis factor therapy in inflammatory bowel disease. World J Gastroenterol 15(17):2067–2073

    Article  PubMed  CAS  Google Scholar 

  • Horn ME, Woodard SL et al (2004) Plant molecular farming: systems and products. Plant Cell Rep 22(10):711–720

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Santi L et al (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24(14):2506–2513

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Phoolcharoen W et al (2009) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106(1):9–17

    Google Scholar 

  • Jacobson JM, Saag MS et al (2008) Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis 198(9):1345–1352

    Article  PubMed  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126(3):930–938

    Article  PubMed  CAS  Google Scholar 

  • Kearney CM, Donson J et al (1993) Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology 192(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Kearney CM, Thomson MJ et al (1999) Genome evolution of tobacco mosaic virus populations during long-term passaging in a diverse range of hosts. Arch Virol 144(8):1513–1526

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk V, Marillonnet S et al (2005) Production of recombinant proteins in plants. In: Knäblein J (ed) Modern biopharmaceuticals. WILEY-WCH Verlag GmbH & Co. KGaA, Weinheim, pp 893–917

    Google Scholar 

  • Knäblein J, McCaman M (2003) Modern Biopharmaceuticals-recombinant protein expression in transgenic plants. SCREENING Trends Drug Discov 6:33–35

    Google Scholar 

  • Ko K, Brodzik R et al (2009) Production of antibodies in plants: approaches and perspectives. Curr Top Microbiol Immunol 332:55–78

    Article  PubMed  CAS  Google Scholar 

  • Lienard D, Sourrouille C et al (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA (2007a) High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors. BMC Biotechnol 7:52

    Article  PubMed  Google Scholar 

  • Lindbo JA (2007b) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145(4):1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Longo D (2009) Lymphoma, Non-Hodgkin’s. Encyclopedia of cancer, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Ma JK, Drake PM et al (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4(10):794–805

    Article  PubMed  CAS  Google Scholar 

  • Mack G (2008) FDA balks at Myozyme scale-up. Nat Biotechnol 26(6):592

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Parks G et al (2002) The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20(6):622–625

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Giritch A et al (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci U S A 101(18):6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C et al (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723

    Article  PubMed  CAS  Google Scholar 

  • Mett V, Farrance CE et al (2008) Plants as biofactories. Biologicals 36(6):354–358

    Article  PubMed  Google Scholar 

  • Moore JP, Trkola A et al (1997) Co-receptors for HIV-1 entry. Curr Opin Immunol 9(4):551–562

    Article  PubMed  CAS  Google Scholar 

  • Murga JD, Franti M et al (2006) Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother 50(10):3289–3296

    Article  PubMed  CAS  Google Scholar 

  • Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Ann Rev Phytopathol 40:45–74

    Google Scholar 

  • Pogue GP, Vojdani F et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  PubMed  CAS  Google Scholar 

  • Rabindran S, Dawson WO (2001) Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology 284(2):182–189

    Article  PubMed  CAS  Google Scholar 

  • Regnard GL, Halley-Stott RP et al (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8(1):38–46

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP (2009) Plant-produced vaccines: promise and reality. Drug Discov Today 14(1–2):16–24

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148(3):1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Lavoie PO et al (2008) Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2. Plant Biotechnol J 6(1):82–92

    PubMed  CAS  Google Scholar 

  • Sainsbury F, Liu L et al (2009) Cowpea mosaic virus-based systems for the expression of antigens and antibodies in plants. Methods Mol Biol 483:25–39

    Article  PubMed  CAS  Google Scholar 

  • Santi L, Giritch A et al (2006) Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc Natl Acad Sci U S A 103(4):861–866

    Article  PubMed  CAS  Google Scholar 

  • Santi L, Batchelor L et al (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26(15):1846–1854

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Soushko M et al (1993) Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 268(20):14820–14825

    PubMed  CAS  Google Scholar 

  • Shearer WT, DeVille JG et al (2006) Susceptibility of pediatric HIV-1 isolates to recombinant CD4-IgG2 (PRO 542) and humanized mAb to the chemokine receptor CCR5 (PRO 140). J Allergy Clin Immunol 118(2):518–521

    Article  PubMed  CAS  Google Scholar 

  • Stein KE, Webber KO (2001) The regulation of biologic products derived from bioengineered plants. Curr Opin Biotechnol 12(3):308–311

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Schillberg S et al (2004) Antibody production in transgenic plants. Methods Mol Biol 248:301–318

    PubMed  CAS  Google Scholar 

  • Takeda A, Sugiyama K et al (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532(1–2):75–79

    Article  PubMed  CAS  Google Scholar 

  • Trkola A, Ketas TJ et al (2001) Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. Virology 75(2):579–588

    Article  PubMed  CAS  Google Scholar 

  • Turpen TH, Turpen AM et al (1993) Transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA of tobacco mosaic virus. J Virol Methods 42(2–3):227–239

    Article  PubMed  CAS  Google Scholar 

  • Usha R, Rohll JB et al (1993) Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197(1):366–374

    Article  PubMed  CAS  Google Scholar 

  • Valdes R, Gomez L et al (2003) Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem Biophys Res Commun 308(1):94–100

    Article  PubMed  CAS  Google Scholar 

  • Van Vloten-Doting L, Bol JF et al (1985) Plant virus-based vectors for gene trans-fer will be of limited use because of the high error frequency during viral RNA synthesis. Plant Mol Biol 4:323−326

    Article  Google Scholar 

  • Vancanneyt G, Dubald M et al (2009) A case study for plant-made pharmaceuticals comparing different plant expression and production systems. Methods Mol Biol 483:209–221

    Article  PubMed  CAS  Google Scholar 

  • Vaquero C, Sack M et al (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci U S A 96(20):11128–11133

    Article  PubMed  CAS  Google Scholar 

  • Vezina LP, Faye L et al (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7(5):442–455

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956

    Article  PubMed  CAS  Google Scholar 

  • Webster DE, Wang L et al (2009) Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system. Plant Biotechnol J 7(9):846–855

    Article  PubMed  CAS  Google Scholar 

  • Weiner LM, Dhodapkar MV et al (2009) Monoclonal antibodies for cancer immunotherapy. Lancet 373(9668):1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Weintraub JA, Hilton JF et al (2005) Clinical trial of a plant-derived antibody on recolonization of mutans streptococci. Caries Res 39(3):241–250

    Article  PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317–2323

    Article  PubMed  CAS  Google Scholar 

  • Wycoff KL (2005) Secretory IgA antibodies from plants. Curr Pharm Des 11(19):2429–2437

    Article  PubMed  CAS  Google Scholar 

  • Yang SJ, Carter SA et al (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci U S A 101(16):6297–6302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Klimyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klimyuk, V., Pogue, G., Herz, S., Butler, J., Haydon, H. (2012). Production of Recombinant Antigens and Antibodies in Nicotiana benthamiana Using ‘Magnifection’ Technology: GMP-Compliant Facilities for Small- and Large-Scale Manufacturing. In: Palmer, K., Gleba, Y. (eds) Plant Viral Vectors. Current Topics in Microbiology and Immunology, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_212

Download citation

Publish with us

Policies and ethics