Skip to main content

Symbionts and Pathogens: What is the Difference?

  • Chapter
  • First Online:
Between Pathogenicity and Commensalism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew P, Koella JC (1997) Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proc Biol Sci 264:9–15

    PubMed  CAS  Google Scholar 

  • Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268

    PubMed  CAS  Google Scholar 

  • Anselme C, Vallier A, Balmand S, Fauvarque MO, Heddi A (2006) Host PGRP gene expression and bacterial release in endosymbiosis of the weevil Sitophilus zeamais. Appl Environ Microbiol 72:6766–6772

    PubMed  CAS  Google Scholar 

  • Baumann L, Thao ML, Hess JM, Johnson MW, Baumann P (2002) The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sapsucking insects. Appl Environ Microbiol 68:3198–3205

    PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York

    Google Scholar 

  • Bull JJ, Molineux IJ, Rice WR (1991) Selection of benevolence in a host–parasite system. Evolution 45:875–882

    Google Scholar 

  • Champion de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. P Roy Soc B-Biol Sci 273:1455–1458

    Google Scholar 

  • Charles H, Heddi A, Guillaud J, Nardon C, Nardon P (1997) A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin. Biochem Biophys Res Commun 239:769–774

    PubMed  CAS  Google Scholar 

  • Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid A. kondoi. Entomol Exp Appl 95:315–323

    Google Scholar 

  • Clark MA, Moran NA, Baumann P (1999) Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598

    PubMed  CAS  Google Scholar 

  • Cushman JH, Beattie AJ (1991) Mutualisms: assessing the benefits to hosts and visitors. Trends Ecol Evol 6:193–195

    PubMed  CAS  Google Scholar 

  • Dale C, Maudlin I (1999) Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49:267–275

    PubMed  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    PubMed  CAS  Google Scholar 

  • Dale C, Welburn SC (2001) The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol 31:628–631

    PubMed  CAS  Google Scholar 

  • Dale C, Young SA, Haydon DT, Welburn SC (2001) The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. In: Proceedings of National Academy of Science, USA 98:1883–1888

    Google Scholar 

  • Dale C, Plague GR, Wang B, Ochman H, Moran NA (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. In: Proceedings of National Academy of Science 99:12397–12402

    Google Scholar 

  • Darby AC, Cho NH, Fuxellus HH, Westberg J, Andersson SGE (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 23:511–520

    PubMed  CAS  Google Scholar 

  • Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–401

    PubMed  CAS  Google Scholar 

  • Day T (2001) Parasite transmission modes and the evolution of virulence. Evolution 55:2389–2400

    PubMed  CAS  Google Scholar 

  • Degnan H, Lazarus AB, Wernegreen JJ (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Ge-nome Res 15:1023–1033

    CAS  Google Scholar 

  • Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, Richards S, Moran NA (2010) Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol 12:2060–2069

    PubMed  CAS  Google Scholar 

  • Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106:9063–9068

    PubMed  CAS  Google Scholar 

  • Dionne MS, Schneider DS (2008) Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis Model Mech 1:43–49

    PubMed  Google Scholar 

  • Dougherty KM, Plague GR (2008) Transposable element loads in a bacterial symbiont of weevils are extremely variable. Appl Environ Microbiol 74:7832–7834

    PubMed  CAS  Google Scholar 

  • Ecker DJ, Sampath R, Willett P, Wyatt JR, Samant V, Massire C, Hall TH, Hari K, McNeil JA, Büchen-Osmond C, Budowle B (2005) The microbial rosetta stone database: a compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol 5:19

    PubMed  Google Scholar 

  • Edwards RA, Olsen GJ, Maloy SR (2002) Comparative genomics of closely related Salmonellae. Trends Microbiol 10:94–99

    PubMed  CAS  Google Scholar 

  • Everett KDE, Thao M, Horn M, Dyszynski GE, Baumann P (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int J Syst Evol Microbiol 55:1581–1587

    PubMed  CAS  Google Scholar 

  • Ewald PW (1995) The evolution of virulence: a unifying link between parasitology and ecology. J Parasitol 81:659–669

    PubMed  CAS  Google Scholar 

  • Falkow S (1997) What is a pathogen? ASM News 7:359–365

    Google Scholar 

  • Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E (2002) Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417:398

    PubMed  CAS  Google Scholar 

  • Fares MA, Moya A, Barrio E (2004) GroEL and the maintenance of bacterial endosymbiosis. Trends Genet 20:413–416

    PubMed  CAS  Google Scholar 

  • Feldhaar H, Gross R (2008) Immune reactions of insects on bacterial pathogens and mutualists. Microb Infect 10:1082–1088

    CAS  Google Scholar 

  • Ferdy JB, Godelle B (2005) Diversification of transmission modes and the evolution of the mutualism. Am Nat 166:613–627

    PubMed  Google Scholar 

  • Ferrari J, Darby AC, Daniell HCJG, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Google Scholar 

  • Ferrière R, Gauduchon M, Bronstein JL (2007) Evolution and persistence of obligate mutualists and exploiters: competition for partners and evolutionary immunization. Ecol Lett 10:115–126

    PubMed  Google Scholar 

  • Fleury F, Vavre F, Ris N, Fouillet P, Boulétreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in Drosophilla parasitoid Leptopilina heterotoma. Parasitology 121:493–500

    PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    PubMed  CAS  Google Scholar 

  • Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection sup-presses both host defence and parasitoid counter-defence. P Roy Soc B-Biol Sci 273:791–796

    Google Scholar 

  • Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, Duncan EJ, Evans JD, Gabaldón T, Ghanim M, Heddi A, Kaloshian I, Latorre A, Moya A, Nakabachi A, Parker BJ, Pérez-Brocal V, Pignatelli M, Rahbé Y, Ramsey JS, Spragg CJ, Tamames J, Tamarit D, Tamborindeguy C, Vincent-Monegat C, Vilcinskas A (2010) Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. doi: 10.1186/gb-2010-11-2-r21

  • Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, van Ham RCHJ, Gross R, Moya A (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. In: Proceedings of National Academy of Science, USA 100:9388–9393

    Google Scholar 

  • Gil R, Latorre A, Moya A (2004) Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol 6:1109–1122

    PubMed  CAS  Google Scholar 

  • Gil R, Belda E, Gosalbes MJ, Delaye L, Vallier A, Vincent-Monegat C, Heddi A, Silva FJ, Moya A, Latorre A (2008) Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae. Int Microbiol 11:41–48

    PubMed  CAS  Google Scholar 

  • Gil R, Latorre A, Moya A (2010) Evolution of prokaryote-animal symbiosis from a genomics perspective. Microbiol Monographs 19:207–233

    Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    PubMed  CAS  Google Scholar 

  • Gil-Turnes MS, Fenical W (1992) Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull 182:105–108

    Google Scholar 

  • Goebel W, Gross R (2001) Intracellular survival strategies of mutualistic and parasitic pro-karyotes. Trends Microbiol 9:267–273

    PubMed  CAS  Google Scholar 

  • Gomez-Valero L, Latorre A, Silva FJ (2004) The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol 21:2172–2181

    PubMed  CAS  Google Scholar 

  • Gosalbes MJ, Lamelas A, Moya A, Latorre A (2008) The striking case of tryptophan provision in the cedar aphid Cinara cedri. J Bacteriol 190:6026–6029

    PubMed  CAS  Google Scholar 

  • Gosalbes MJ, Latorre A, Lamelas A, Moya A (2010) Genomics of intracellular symbionts in insects. Int J Med Microbiol 300:271–278

    PubMed  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599

    PubMed  CAS  Google Scholar 

  • Govind S (2008) Innate immunity in Drosophila: pathogens and pathways. Insect Sci 8(15):29–43

    Google Scholar 

  • Guay J-F, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926

    PubMed  CAS  Google Scholar 

  • Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

    PubMed  CAS  Google Scholar 

  • Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. In: Proceedings of National Acadmy of Science, USA 98:12648–12653

    Google Scholar 

  • Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Envir Microbiol 69:7216–7223

    CAS  Google Scholar 

  • Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P (1998) Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G + C content of an endocytobiotic DNA. J Mol Evol 47:52–61

    PubMed  CAS  Google Scholar 

  • Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P (1999) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. In: Proceedings of National Academy of Science 96:6814–6819

    Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. In: Proceedings of National Academy of Science 107:769–774

    CAS  Google Scholar 

  • Hurst GD, Graf von der Schulenburg JH, Majerus TM, Bertrand D, Zakharov IA, Baungaard J, Völkl W, Stouthamer R, Majerus ME (1999a) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139

    PubMed  CAS  Google Scholar 

  • Hurst GDD, Jiggins FM, von der Schulenberg JHG, Bertrand D, West SA, Goriacheva II, Zakharov MEN, Werren JH, Stouthamer R, Majerus EN (1999b) Male-killing Wolbachia in Trichogramma wasps. P Roy Soc B Biol Sci 266:735–740

    Google Scholar 

  • Jiggins FM, Hurst GDD, Jiggins CD, von der Schulenburg JHG, Majerus MEN (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446

    PubMed  Google Scholar 

  • Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y, Zhu J, Kan B, Ding K, Chen S, Cheng H, Yao Z, He B, Chen R, Ma D, Qiang B, Wen Y, Hou Y, Yu J (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30:4432–4441

    PubMed  CAS  Google Scholar 

  • Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25:1877–1887

    PubMed  CAS  Google Scholar 

  • Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R, Bourtzis K, Andersson SG (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. In: Proceedings of National Academy of Science 106:5725–5730

    Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc Biol Sci 270:2543–2550

    PubMed  Google Scholar 

  • Kono M, Koga R, Shimada M, Fukatsu T (2008) Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 74:4175–4184

    PubMed  CAS  Google Scholar 

  • Kurtz J, Armitage SAO (2006) Alternative adaptive immunity in invertebrates. Trends Immunol 27:493–496

    PubMed  CAS  Google Scholar 

  • Lamelas A, Pérez-Brocal V, Gómez-Valero L, Gosalbes MJ, Moya A, Latorre A (2008) Evolution of the secondary symbiont ‘‘Candidatus Serratia symbiotica’’ in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74:4236–4240

    PubMed  CAS  Google Scholar 

  • Langworthy NG, Renz A, Mackenstedt U, Henkle-Duhrsen K, De Bronsvoort MB, Tanya VN, Donnelly MJ, Trees AJ (2000) Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc R Soc Lond B Biol Sci 267:1063–1069

    CAS  Google Scholar 

  • Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88:15–21

    Google Scholar 

  • Latorre A, Gil R, Silva FJ, Moya A (2005) Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola. Heredity 95:339–347

    PubMed  CAS  Google Scholar 

  • Lebecque SG, Bearhart PJ (1990) Boundaries of somatic mutation in rearranged immunoglobulin genes: 5b boundary is near the promoter and 3b boundary is 1 Kb from V(D)J gene. J Exp Med 172:1717–1727

    PubMed  CAS  Google Scholar 

  • Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 21:965–973

    PubMed  CAS  Google Scholar 

  • Leung TLF, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie Milieu 58:107–115

    Google Scholar 

  • López-Sánchez MJ, Neef A, Peretó J, Patiño-Navarrete R, Pignatelli M, Latorre A, Moya A (2009) Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet 5:e1000721

    PubMed  Google Scholar 

  • Male D (2004) Immunology. Elsevier, London

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution, 1st edn. Freeman, New York

    Google Scholar 

  • Margulis L (1993) Symbiosis in Cell Evolution, 2nd edn. Freeman, New York

    Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. In: Proceedings of National Academy of Science 104:19392–19397

    Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718

    PubMed  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565

    PubMed  Google Scholar 

  • Meyers RA (2007) Immunology: from cell biology to disease. Wiley, Weinheim

    Google Scholar 

  • Miller MR, White A, Boots M (2006) The evolution of parasites in response to tolerance in their host: the good, the bad, and apparent commensalism. Evolution 60:945–956

    PubMed  Google Scholar 

  • Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M (2002) Two novel strains of Wolbachia coexist in both species of mulberry leafhoppers, Hishimonoides sellatiformis and Hishimonus sellatus which are vectors of mulberry dwarf phytoplasma. Insect Mol Biol 11:577–584

    PubMed  CAS  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. In: Proceedings of National Academy of Science USA 93:2873–2878

    Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. In: Proceedings of National Academy of Science 104:8627–8633

    Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326

    PubMed  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005a) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    CAS  Google Scholar 

  • Moran NA, Tran P, Gerardo NM (2005b) Symbiosis and insect diversification: an ancient symbiont of sapfeeding insects from the bacterial phylum Bacteroidetes. App Environ Microbiol 71:8802–8810

    CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    PubMed  CAS  Google Scholar 

  • Moya A, Latorre A, Sabater-Munoz B, Silva FJ (2002) Comparative molecular evolution of primary (Buchnera) and secondary symbionts of aphids based on two protein-coding genes. J Mol Evol 55:127–137

    PubMed  CAS  Google Scholar 

  • Moya A, Gil R, Latorre A (2009) The evolutionary history of symbiotic associations among bacteria and their animal hosts: a model. Clin Microbiol Infect 15:11–13

    PubMed  Google Scholar 

  • Müller WEG, Müller I (2003) Analysis of the sponge (Porifera) gene repertoire: implication for the evolution of the Metazoan body plan. In: Müller WEG (ed) Marine Molecular Biotechnology. Springer-Verlag, Berlin

    Google Scholar 

  • Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, Carninci P, Ishikawa H, Kudo T, Fukatsu T (2005) Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. In: Proceedings of National Academy of Science 102:5477–5482

    Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    PubMed  CAS  Google Scholar 

  • Nováková E, Hypsa V (2007) A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont So dalis glossinidius. FEMS Microbiol Lett 269:131–135

    PubMed  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. In: Proceedings of National Academy of Science 102:12795–12800

    Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. P Roy Soc B Biol Sci 273:1273–1280

    Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    PubMed  CAS  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S ribosomal RNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. In: Proceedings of National Academy of Science 89:2699–2702

    Google Scholar 

  • Perez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313

    PubMed  CAS  Google Scholar 

  • Perrot-Minnot MJ, Cheval B, Migeon A, Navajas M (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J Evol Biol 15:808–817

    Google Scholar 

  • Pier GB, Lyczak JB, Wetzler LM (2004) Immunology, infection, and immunity. ASM Press, Washington DC

    Google Scholar 

  • Plague GR, Dunbar HE, Tran PL, Moran NA (2008) Extensive proliferation of transposable elements in heritable bacterial symbionts. J Bacteriol 190:777–779

    PubMed  CAS  Google Scholar 

  • Poulsen M, Cafaro M, Boosma JJ, Currie CR (2005) Specificity of the mutualistic associ-ation between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants. Mol Ecol 14:3597–3604

    PubMed  CAS  Google Scholar 

  • Rokita E, Makristathis A, Presterl E, Rotter ML, Hirschl AM (1998) Helicobacter pylori urease significantly reduces opsonization by human complement. J Infect Dis 178:1521–1525

    PubMed  CAS  Google Scholar 

  • Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71:7987–7994

    PubMed  CAS  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci 273:603–610

    PubMed  Google Scholar 

  • Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    PubMed  CAS  Google Scholar 

  • Saffo MB (1990) Symbiosis within a symbiosis: Intracellular bacteria within the endosymbiotic protist Nephromyces. Marine Biol 107:291–296

    Google Scholar 

  • Sakurai M, Koga R, Tsuchida T, Meng X-Y, Fukatsu T (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71:4069–4075

    PubMed  CAS  Google Scholar 

  • Sandström JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    PubMed  Google Scholar 

  • Sassera D, Beninati T, Bandi C, Bouman EAP, Sacchi L, Fabby M, Lo N (2006) ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol 56:2535–2540

    PubMed  CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Bacterial endosymbiont increases aphid inclusive fitness after pathogen attack. Science 310:1781

    PubMed  CAS  Google Scholar 

  • Schulenburg H, Boehnisch C, Michiels NK (2007) How do invertebrates generate a highly specific innate immune response? Mol Immunol 44:3338–3344

    PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    PubMed  CAS  Google Scholar 

  • Silva FJ, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 17:615–618

    PubMed  CAS  Google Scholar 

  • Silva FJ, Latorre A, Moya A (2003) Why are the genomes of endosymbiotic bacteria so stable? Trends Genet 19:176–180

    PubMed  CAS  Google Scholar 

  • Silverman DJ, Bound SB (1984) Infection of human vascular endothelial cells by Rickettsia rickettsii. J Infect Dis 149:201–206

    PubMed  CAS  Google Scholar 

  • Simon JC, Carre S, Boutin M, Prunier-Leterme N, Sabater-Mun B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc Biol Sci 270:1703–1712

    PubMed  Google Scholar 

  • Steinert M, Hentschel U, Hacker J (2000) Symbiosis and pathogenesis: evolution of the microbe-host interaction. Naturwissenschaften 87:1–11

    PubMed  CAS  Google Scholar 

  • Stewart AD, Logsdon JM Jr, Kelley SE (2005) An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59:730–739

    PubMed  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    PubMed  CAS  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    CAS  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleet wood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhi zobium loti strain R7A. J Bacteriol 184:3086–3095

    PubMed  CAS  Google Scholar 

  • Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A (2007) The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol 7:181

    PubMed  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    PubMed  CAS  Google Scholar 

  • Thao ML, Gullan PJ, Baumann P (2002) Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 68:3190–3197

    PubMed  CAS  Google Scholar 

  • Toft C, Andersson SGE (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nature Rev Genet 11:465–475

    PubMed  CAS  Google Scholar 

  • Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    PubMed  CAS  Google Scholar 

  • Touchon M, Rocha EP (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24:969–981

    PubMed  CAS  Google Scholar 

  • Tsuchida TR, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    PubMed  CAS  Google Scholar 

  • van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Moran F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. In: Proceedings of National Academy of Science 100:581–586

    Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723

    PubMed  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412:433–436

    Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Na noarchaeum equitans: insights into early archaeal evolution and derived parasitism. In: Proceedings of National Academy of Science 100:12984–12988

    Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114

    PubMed  Google Scholar 

  • Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G 3rd, Rose DJ, Darling A, Mau B, Perna NT, Payne SM, Runyen-Janecky LJ, Zhou S, Schwartz DC, Blattner FR (2003) Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71:2775–2786

    PubMed  CAS  Google Scholar 

  • Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15:572–583

    PubMed  CAS  Google Scholar 

  • Werren JH, Hurst GDD, Zhang W, Breeuwer JAJ, Stouthamer R, Majerus MEN (1994) Rickettsial relative associated with male-killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394

    PubMed  CAS  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    PubMed  CAS  Google Scholar 

  • Williamson DL, Poulson DF (1979) Sex ratio organisms (Spiroplasmas) of Drosophila. In: Whitcomb RF, Tully JG (eds) The Mycoplasmas. Academic Press, New York

    Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    PubMed  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188

    PubMed  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (2006) Male-killing Wolbachia in a live-bearing arthropod: brood abortion as a constraint on the spread of a selfish microbe. J Invertebr Pathol 92:33–38

    PubMed  CAS  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745–770

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by grants BFU2009-12895-C02-01 (Ministerio de Ciencia e Innovación, Spain) to A. Latorre, and SAF2009-13302-C02-01 (Ministerio de Ciencia e Innovación, Spain) and PROMETEO/2009/092 (Conselleria d’Educació, Generalitat Valenciana, Spain) to A. Moya

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Pérez-Brocal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pérez-Brocal, V., Latorre, A., Moya, A. (2011). Symbionts and Pathogens: What is the Difference?. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_190

Download citation

Publish with us

Policies and ethics