Skip to main content

Lactobacillus: Host–Microbe Relationships

  • Chapter
  • First Online:
Between Pathogenicity and Commensalism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

Lactobacilli are a subdominant component of the human intestinal microbiota that are also found in other body sites, certain foods, and nutrient-rich niches in the free environment. They represent the types of microorganisms that mammalian immune systems have learned not to react to, which is recognized as a potential driving force in the evolution of the human immune system. Co-evolution of lactobacilli and animals provides a rational basis to postulate an association with health benefits. To further complicate a description of their host interactions, lactobacilli may rarely cause opportunistic infections in compromised subjects. In this review, we focus primarily on human–Lactobacillus interactions. We overview the microbiological complexity of this extraordinarily diverse genus, we describe where lactobacilli are found in or on humans, what responses their presence elicits, and what microbial interaction and effector molecules have been identified. The rare cases of Lactobacillus septicaemia are explained in terms of the host impairment required for such an outcome. We discuss possibilities for exploitation of lactobacilli for therapeutic delivery and mucosal vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aCGH:

Array-based comparative genome hybridization

GIT:

Gastrointestinal tract

GRAS:

Generally Regarded As Safe

IL10:

Interleukin 10

LAB:

Lactic acid bacteria

MAMP:

Microbe associated molecular pattern

PRR:

Pattern recognition receptor

TLR:

Toll-like receptor

References

  • Alander M, Satokari R et al (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65(1):351–354

    PubMed  CAS  Google Scholar 

  • Altermann E, Russell WM et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102(11):3906–3912

    Article  PubMed  CAS  Google Scholar 

  • Apostolou E, Kirjavainen PV et al (2001) Good adhesion properties of probiotics: a potential risk for bacteremia? FEMS Immunol Med Microbiol 31(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Asong J, Wolfert MA et al (2009) Binding and cellular activation studies reveal that toll-like receptor 2 can differentially recognize peptidoglycan from gram-positive and gram-negative bacteria. J Biol Chem 284(13):8643–8653

    Article  PubMed  CAS  Google Scholar 

  • Atarashi K, Tanoue T et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341

    Google Scholar 

  • Bath K, Roos S et al (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253(1):75–82

    Article  PubMed  CAS  Google Scholar 

  • Bauerl C, Perez-Martinez G et al (2010) Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol 19(4):231–241

    Article  PubMed  CAS  Google Scholar 

  • Becker MR, Paster BJ et al (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40(3):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Comm Dent Oral Epidemiol 33(4):248–255

    Article  Google Scholar 

  • Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4(11):430–435

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Pridmore RD et al (2007) Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189(4):1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Bernardeau M, Guguen M et al (2006) Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 30(4):487–513

    Article  PubMed  CAS  Google Scholar 

  • Besselink MG, van Santvoort HC et al (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371(9613):651–659

    Article  PubMed  Google Scholar 

  • Bik EM (2009) Composition and function of the human-associated microbiota. Nutr Rev 67(2):S164–S171

    Article  PubMed  Google Scholar 

  • Bik EM, Eckburg PB et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103(3):732–737

    Article  PubMed  CAS  Google Scholar 

  • Boekhorst J, de Been MW et al (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187(14):4928–4934

    Article  PubMed  CAS  Google Scholar 

  • Boekhorst J, Helmer Q et al (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152(Pt 1):273–280

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Quinquis B et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22(12):1554–1558

    Article  PubMed  CAS  Google Scholar 

  • Borriello SP, Hammes WP et al (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36(6):775–780

    Article  PubMed  CAS  Google Scholar 

  • Boyle RJ, Robins-Browne RM et al (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83(6):1256–1264; quiz 1446–1257

    Google Scholar 

  • Buck BL, Altermann E et al (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351

    Article  PubMed  CAS  Google Scholar 

  • Burt BA, Loesche WJ et al (1985) Stability of selected plaque species and their relationship to caries in a child population over 2 years. Caries Res 19(3):193–200

    Article  PubMed  CAS  Google Scholar 

  • Byun R, Nadkarni MA et al (2004) Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol 42(7):3128–3136

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Rodriguez BT et al (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 153(Pt 8):2655–2665

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Thompson R et al (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 1:239–257

    Article  PubMed  CAS  Google Scholar 

  • Callanan M, Kaleta P et al (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190(2):727–735

    Article  PubMed  CAS  Google Scholar 

  • Canchaya C, Claesson MJ et al (2006) Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152:3185–3196

    Article  PubMed  CAS  Google Scholar 

  • Cannon JP, Lee TA et al (2005) Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Carr JG, Davies PA (1970) Homofermentative lactobacilli of ciders including Lactobacillus mali nov. spec. J Appl Bacteriol 33(4):768–774

    Article  PubMed  CAS  Google Scholar 

  • Caufield PW, Li Y et al (2007) Diversity of lactobacilli in the oral cavities of young women with dental caries. Caries Res 41(1):2–8

    Article  PubMed  CAS  Google Scholar 

  • Chaillou S, Champomier-Verges MC et al (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23(12):1527–1533

    Google Scholar 

  • Chang TL, Chang CH et al (2003) Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci U S A 100(20):11672–11677

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Miyashita M et al (2010) Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia). Int J Syst Evol Microbiol 60(Pt 8):1914–1917

    Article  PubMed  CAS  Google Scholar 

  • Christensen HR, Frokiaer H et al (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171–178

    PubMed  CAS  Google Scholar 

  • Claesson MJ, Van Sinderen D et al (2008) Lactobacillus phylogenomics—towards a reclassification of the genus. Int J Syst Evol Microbiol 58(12):2945–2954

    Google Scholar 

  • Claesson MJ, O’Sullivan O et al (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4(8):e6669

    Article  PubMed  CAS  Google Scholar 

  • Claesson MJ, van Sinderen D et al (2007) The genus Lactobacillus—a genomic basis for understanding its diversity. FEMS Microbiol Lett 269(1):22–28

    Article  PubMed  CAS  Google Scholar 

  • Collado MC, Isolauri E et al (2008) Specific probiotic strains and their combinations counteract adhesion of Enterobacter sakazakii to intestinal mucus. FEMS Microbiol Lett 285(1):58–64

    Google Scholar 

  • Collins MD, Rodrigues U et al (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic-acid bacteria as determined by reverse-transcriptase sequencing of 16s ribosomal-RNA. FEMS Microbiol Lett 77(1):5–12

    Article  CAS  Google Scholar 

  • Dal Bello F, Hertel C (2006) Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 29(1):69–76

    Article  PubMed  CAS  Google Scholar 

  • Dellaglio F, Felis GE (2005) Taxonomy of lactobacilli and bifidobacteria. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Norfolk, pp 25–49

    Google Scholar 

  • Denou E, Pridmore RD et al (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190(9):3161–3168

    Article  PubMed  CAS  Google Scholar 

  • Dent VE, Williams RAD (1982) Lactobacillus animalis sp-nov, a new species of Lactobacillus from the alimentary canal of animals. Zentralblatt Bakteriol. Mikrobiol. Hyg 3(3):377–386

    Google Scholar 

  • Drury TF, Horowitz AM et al (1999) Diagnosing and reporting early childhood caries for research purposes. A report of a workshop sponsored by the National Institute of Dental and Craniofacial Research, the Health Resources and Services Administration, and the Health Care Financing Administration. J Public Health Dent 59(3):192–197

    Article  PubMed  CAS  Google Scholar 

  • Duerkop BA, Vaishnava S et al (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31(3):368–376

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Lobley GE et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32(11):1720–1724

    Article  CAS  Google Scholar 

  • Dunne C, Murphy L et al (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Ant Van Leeuwenh 76(1–4):279–292

    Article  CAS  Google Scholar 

  • Dunne C, O’Mahony L et al (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(2):386S–392S

    PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  Google Scholar 

  • FAO/WHO (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina

    Google Scholar 

  • Fava F, Lovegrove JA et al (2006) The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem 13(25):3005–3021

    Article  PubMed  CAS  Google Scholar 

  • Felis GE, Dellaglio F (2007) “Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8(2):44–61

    PubMed  CAS  Google Scholar 

  • Felley CP, Corthesy-Theulaz I et al (2001) Favourable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man. Eur J Gastroenterol Hepatol 13(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Finegold SM, Sutter VL et al (1983) Normal indigenous intestinal microbiota. In: Heneges DJ (ed) Human intestinal microbiota in health and disease. Academic Press, New York, pp 3–31

    Google Scholar 

  • Frank DN, St Amand AL et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Fredricks DN, Fiedler TL et al (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353(18):1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa T, Shirasaka S et al (1984) Lactobacillus aviarius sp. nov.—a new species Isolated from the intestine of chickens. Syst Appl Microbiol 5(3):414–420

    Article  Google Scholar 

  • Fujisawa T, Benno Y et al (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al. 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). Int J Syst Bacteriol 42(3):487–491

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Tseng CH et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3(7):e2719

    Article  PubMed  CAS  Google Scholar 

  • Gill SR, Pop M et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Grangette C, Nutten S et al (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 102(29):10321–10326

    Article  PubMed  CAS  Google Scholar 

  • Grice EA, Kong HH et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192

    Article  PubMed  CAS  Google Scholar 

  • Guan LL, Hagen KE et al (2003) Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl Environ Microbiol 69(11):6750–6757

    Article  PubMed  CAS  Google Scholar 

  • Guarner F, Bourdet-Sicard R et al (2006) Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 3(5):275–284

    Article  PubMed  CAS  Google Scholar 

  • Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria, vol 2. Blackie Academic and Professional, Glasgow, pp 19–54

    Google Scholar 

  • Hansson GC, Johansson ME (2010) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1(1):51–54

    Article  PubMed  Google Scholar 

  • Hapfelmeier S, Lawson MA et al (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986):1705–1709

    Article  PubMed  CAS  Google Scholar 

  • Harty DW, Oakey HJ et al (1994) Pathogenic potential of lactobacilli. Int J Food Microbiol 24(1–2):179–189

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Sakamoto M et al (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46(8):535–548

    PubMed  CAS  Google Scholar 

  • Hayashi H, Takahashi R et al (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54(Pt 11):1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Hickson M, D’Souza AL et al (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. Brit Med J 335(7610):80

    Article  PubMed  Google Scholar 

  • Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(1):S43–S45

    Article  PubMed  Google Scholar 

  • Husni RN, Gordon SM et al (1997) Lactobacillus bacteremia and endocarditis: review of 45 cases. Clin Infect Dis 25(5):1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Isolauri E, Juntunen M et al (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88(1):90–97

    PubMed  CAS  Google Scholar 

  • Johansson ME, Holmen Larsson JM et al (2011) Microbes and health sackler colloquium: The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665

    Google Scholar 

  • Johansson ME, Phillipson M et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069

    Article  PubMed  CAS  Google Scholar 

  • Kadooka Y, Sato M et al (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643

    Article  PubMed  CAS  Google Scholar 

  • Kaji R, Kiyoshima-Shibata J et al (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain Lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa A, Igimi S (2010) Innate and acquired immune responses induced by recombinant Lactobacillus casei displaying flagellin-fusion antigen on the cell-surface. Vaccine 28(19):3409–3415

    Google Scholar 

  • Kajikawa A, Satoh E et al (2007) Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar enteritidis. Vaccine 25(18):3599–3605

    Article  PubMed  CAS  Google Scholar 

  • Kanasi E, Dewhirst FE et al (2010) Clonal analysis of the microbiota of severe early childhood caries. Caries Res 44(5):485–497

    Article  PubMed  CAS  Google Scholar 

  • Kandler O, Weiss N (1986) Regular, nonsporing Gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1208–1234

    Google Scholar 

  • Kankainen M, Paulin L et al (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106(40):17193–17198

    Article  PubMed  CAS  Google Scholar 

  • Kirjavainen PV, Tuomola EM et al (1999) In vitro adhesion and platelet aggregation properties of bacteremia-associated lactobacilli. Infect Immun 67(5):2653–2655

    PubMed  CAS  Google Scholar 

  • Klaenhammer TR, Barrangou R et al (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. EMS Microbiol Rev 29(3):393–409

    Article  CAS  Google Scholar 

  • Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100(4):1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Hols P et al (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34(2):199–230

    Article  PubMed  CAS  Google Scholar 

  • Kligler IJ (1915) Chemical studies of the relations of oral microorganisms to dental caries. J Allied Dental Soc 10:141–166

    CAS  Google Scholar 

  • Knarreborg A, Simon MA et al (2002) Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl Environ Microbiol 68(12):5918–5924

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov SR, Smidt H et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 105(49):19474–19479

    Article  PubMed  CAS  Google Scholar 

  • Kunji ER, Mierau I et al (1996) The proteolytic systems of lactic acid bacteria. Ant Van Leeuwenh 70(2–4):187–221

    Article  CAS  Google Scholar 

  • Lancet EoT (2010) Expression of concern—probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 375(9718):875–876

    Article  Google Scholar 

  • Land MH, Rouster-Stevens K et al (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115(1):178–181

    PubMed  Google Scholar 

  • Lebeer S, Vanderleyden J et al (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764

    Article  PubMed  CAS  Google Scholar 

  • Lee HH, Orlovich DA et al (2009) Detection and specific enumeration of multi-strain probiotics in the lumen contents and mucus layers of the rat intestine after oral administration. Probiotics Antimicrob Prot 1:113–120

    Article  Google Scholar 

  • Leverett DH, Featherstone JD et al (1993) Caries risk assessment by a cross-sectional discrimination model. J Dent Res 72(2):529–537

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Navia JM et al (1994) Colonization by mutans streptococci in the mouths of 3- and 4-year-old Chinese children with or without enamel hypoplasia. Arch Oral Biol 39(12):1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Raftis E et al (2006) Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. salicinius do not merit separate subspecies status. Int J Sys Evol Microbiol 56:2397–2403

    Article  CAS  Google Scholar 

  • Ling Z, Kong J et al (2010a) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60(3):677–690

    Article  PubMed  CAS  Google Scholar 

  • Ling Z, Kong J et al (2010b) Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genom 11:488

    Article  CAS  Google Scholar 

  • Liu X, Lagenaur LA et al (2008) Engineering of a human vaginal Lactobacillus strain for surface expression of two-domain CD4 molecules. Appl Environ Microbiol 74(15):4626–4635

    Article  PubMed  CAS  Google Scholar 

  • Livingston M, Loach D et al (2010) Gut commensal Lactobacillus reuteri 100-23 stimulates an immunoregulatory response. Immunol Cell Biol 88(1):99–102

    Article  PubMed  Google Scholar 

  • Loesche WJ, Eklund S et al (1984) Longitudinal investigation of bacteriology of human fissure decay: epidemiological studies in molars shortly after eruption. Infect Immun 46(3):765–772

    PubMed  CAS  Google Scholar 

  • Lorca G, Torino MI et al (2002) Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin. FEMS Microbiol Lett 206(1):31–37

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie DA, Tailford LE et al (2009) Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 284(47):32444–32453

    Article  PubMed  CAS  Google Scholar 

  • Macklaim JM, Gloor GB et al (2011) Microbes and health sackler colloquium: at the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci U S A 108(Suppl 1):4688–4695

    Google Scholar 

  • Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Geuking MB et al (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115(2):153–162

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189(4):1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Makarova K, Slesarev A et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103(42):15611–15616

    Article  PubMed  Google Scholar 

  • Marchant S, Brailsford SR et al (2001) The predominant microflora of nursing caries lesions. Caries Res 35(6):397–406

    Article  PubMed  CAS  Google Scholar 

  • Marsh P, Martin MV (1999) The resident oral microflora: oral microbiology. Reed Educational and Professional, Woburn, pp 17–33

    Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Matsuguchi T, Takagi A et al (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through toll-like receptor 2. Clin Diagn Lab Immunol 10(2):259–266

    PubMed  CAS  Google Scholar 

  • Mattila-Sandholm T, Blum S et al (1999) Probiotics: towards demonstrating efficiency. Trends Food Sci Technol 10:393–399

    Article  CAS  Google Scholar 

  • Mazmanian SK, Liu CH et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Mazmanian SK, Round JL et al (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625

    Article  PubMed  CAS  Google Scholar 

  • Meijerink M, van Hemert S et al (2010) Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 5(5):e10632

    Article  PubMed  CAS  Google Scholar 

  • Metchnikoff E (1907) The prolongation of life: optimistic studies. William Heinemann, London

    Google Scholar 

  • Metchnikoff E (1908) The nature of man: studies in optimistic philosophy. William Heinemann, London

    Book  Google Scholar 

  • Meyer-Hoffert U, Hornef MW et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771

    Article  PubMed  CAS  Google Scholar 

  • Miettinen M, Matikainen S et al (1998) Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect Immun 66(12):6058–6062

    PubMed  CAS  Google Scholar 

  • Mitsuoka T (1978) Intestinal bacteria and health. Harcourt Brace Jovanovich, Tokyo

    Google Scholar 

  • Miyauchi E, Morita H et al (2009) Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J Dairy Sci 92(6):2400–2408

    Article  PubMed  CAS  Google Scholar 

  • Mohamadzadeh M, Olson S et al (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102(8):2880–2885

    Article  PubMed  CAS  Google Scholar 

  • Mohamadzadeh M, Durmaz E et al (2010) Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol 5(8):1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Molenaar D, Bringel F et al (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187(17):6119–6127

    Article  PubMed  CAS  Google Scholar 

  • Munson MA, Banerjee A et al (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42(7):3023–3029

    Article  PubMed  CAS  Google Scholar 

  • Neville BA, O’Toole PW (2010) Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 5(5):759–774

    Article  PubMed  CAS  Google Scholar 

  • O’Hara AM, O’Regan P et al (2006) Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 118(2):202–215

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan O, O’Callaghan J et al (2009) Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiol 9:50

    Article  PubMed  CAS  Google Scholar 

  • O’Toole PW, Claesson MJ (2010) Gut microbiota: changes throughout the lifespan from infancy to elderly. Internat Dairy J 20:281–291

    Article  CAS  Google Scholar 

  • Oh PL, Benson AK et al (2010) Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4(3):377–387

    Article  PubMed  Google Scholar 

  • Orla-Jensen S (1919) The lactic acid bacteria. Mem Acad Roy Sci Denmark Sect Sci 8 Ser 5:81–197

    Google Scholar 

  • O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008:175285

    Google Scholar 

  • Parahitiyawa NB, Scully C et al (2010) Exploring the oral bacterial flora: current status and future directions. Oral Dis 16(2):136–145

    Article  PubMed  CAS  Google Scholar 

  • Pavlova SI, Kilic AO et al (2002) Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92(3):451–459

    Article  PubMed  CAS  Google Scholar 

  • Perea Velez M, Verhoeven TL et al (2007) Functional analysis of d-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73(11):3595–3604

    Article  PubMed  CAS  Google Scholar 

  • Pretzer G, Snel J et al (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187(17):6128–6136

    Article  PubMed  CAS  Google Scholar 

  • Pridmore RD, Berger B et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101(8):2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Li R et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  PubMed  CAS  Google Scholar 

  • Raftis EJ, Salvetti E et al (2011) Genomic diversity of Lactobacillus salivarius. Appl Environ Microbiol 77(3):954–965

    Article  PubMed  CAS  Google Scholar 

  • Rastall RA, Gibson GR et al (2005) Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 52(2):145–152

    Article  PubMed  CAS  Google Scholar 

  • Ravel J, Gajer P et al (2011) Microbes and health sackler colloquium: vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4523–4530

    Google Scholar 

  • Reid G, Charbonneau D et al (2003) Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol 35(2):131–134

    Article  PubMed  CAS  Google Scholar 

  • Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2(2):43–53

    PubMed  CAS  Google Scholar 

  • Rijkers GT, Bengmark S et al (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr 140(3):671S–676S

    Article  PubMed  CAS  Google Scholar 

  • Rogosa M, Wiseman RF et al (1953) Species differentiation of oral lactobacilli from man including description of Lactobacillus salivarius nov spec and Lactobacillus cellobiosus nov spec. J Bacteriol 65(6):681–699

    PubMed  CAS  Google Scholar 

  • Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148(Pt 2):433–442

    PubMed  CAS  Google Scholar 

  • Roos S, Engstrand L et al (2005) Lactobacillus gastricus sp. nov. Lactobacillus antri sp. nov. Lactobacillus kalixensis sp. nov. and Lactobacillus ultunensis sp. nov. isolated from human stomach mucosa. Int J Syst Evol Microbiol 55(Pt 1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107(27):12204–12209

    Article  PubMed  CAS  Google Scholar 

  • Ryan KA, Jayaraman T et al (2008a) Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol 47: 269–274

    Google Scholar 

  • Ryan KA, Daly P et al (2008b) Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli. J Antimicrob Chemother 61(4):831–834

    Article  PubMed  CAS  Google Scholar 

  • Salvana EM, Frank M (2006) Lactobacillus endocarditis: case report and review of cases reported since 1992. J Infect 53(1):e5–e10

    Article  PubMed  Google Scholar 

  • Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84(2):319–331

    Article  PubMed  CAS  Google Scholar 

  • Sanders ME, Akkermans LMA et al (2010) Safety assessment of probiotics for human use. Gut Microbes 1:164–185

    Article  PubMed  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  • Savino F, Cordisco L et al (2010) Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 126(3):e526–e533

    Article  PubMed  Google Scholar 

  • Saxelin M, Lassig A et al (2010) Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol 144(2):293–300

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Wehkamp J et al (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75(5):2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB, Holzapfel WH (eds) The genera of Lactic Acid Bacteria, Vol 2. Blackie Academic and Professional, pp 7–18

    Google Scholar 

  • Sekirov I, Russell SL et al (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  PubMed  CAS  Google Scholar 

  • Sharpe ME, Latham MJ et al (1973) Two new species of Lactobacillus isolated from the bovine rumen, Lactobacillus ruminis sp.nov. and Lactobacillus vitulinus sp.nov. J Gen Microbiol 77(1):37–49

    PubMed  CAS  Google Scholar 

  • Sims IM, Frese SA et al (2011) Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23 ISME J 5(7):1115–1124

    Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7(6):253–260

    Article  PubMed  CAS  Google Scholar 

  • Snel J, Vissers YM et al (2010) Strain-specific immunomodulatory effects of Lactobacillus plantarum strains on birch-pollen-allergic subjects out of season. Clin Exp Allergy 41(2):232–242

    Google Scholar 

  • Sokol H, Pigneur B et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105(43):16731–16736

    Article  PubMed  CAS  Google Scholar 

  • Spanhaak S, Havenaar R et al (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52(12):899–907

    Article  PubMed  CAS  Google Scholar 

  • Spellberg B (2008) Dr. William H. Stewart: mistaken or maligned? Clin Infect Dis 47(2):294

    Google Scholar 

  • Steidler L, Neirynck S (2005) Genetically modified probiotics. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Norfolk, pp 155–170

    Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Ant Van Leeuwenh 70(2–4):331–345

    Article  CAS  Google Scholar 

  • Tallant T, Deb A et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4:33

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW (2004) A special fondness for lactobacilli. Appl Environ Microbiol 70(6):3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Munro K et al (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66(6):2578–2588

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Ghazally S et al (2005) Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol 71(12):8419–8425

    Article  PubMed  CAS  Google Scholar 

  • Troost FJ, van Baarlen P et al (2008) Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genom 9:374

    Article  CAS  Google Scholar 

  • van Baarlen P, Troost F et al (2011) Microbes and health sackler colloquium: human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A 108(Suppl 1):4562–4569

    Google Scholar 

  • van Baarlen P, Troost FJ et al (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 106(7):2371–2376

    Article  PubMed  Google Scholar 

  • van de Guchte M, Penaud S et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103(24):9274–9279

    Article  PubMed  CAS  Google Scholar 

  • van Kranenburg R, Boels IC et al (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 10(5):498–504

    Article  PubMed  Google Scholar 

  • van Pijkeren J-P, Canchaya C et al (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Env Microbiol 72:4143–4153

    Article  CAS  Google Scholar 

  • Vandamme P, Pot B et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60(2):407–438

    PubMed  CAS  Google Scholar 

  • Vaughan EE, de Vries MC et al (2002) The intestinal LABs. Ant Van Leeuwenh 82(1–4):341–352

    Article  CAS  Google Scholar 

  • Velcich A, Yang W et al (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295(5560):1726–1729

    Article  PubMed  CAS  Google Scholar 

  • Velez MP, Petrova MI et al (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59(3):386–398

    PubMed  CAS  Google Scholar 

  • Ventura M, O’Flaherty S et al (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–71

    Article  PubMed  CAS  Google Scholar 

  • Verhelst R, Verstraelen H et al (2004) Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16

    Article  PubMed  Google Scholar 

  • Vesterlund S, Vankerckhoven V et al (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116(3):325–331

    Article  PubMed  CAS  Google Scholar 

  • von der Weid T, Bulliard C et al (2001) Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol 8(4):695–701

    PubMed  Google Scholar 

  • von Ossowski I, Reunanen J et al (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76(7):2049–2057

    Article  CAS  Google Scholar 

  • Walter J (2005) The microecology of Lactobacilli in the gastrointestinal tract. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Norfolk, pp 51–82

    Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Britton RA et al (2011) Microbes and health sackler colloquium: host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 108(Suppl 1):4645–4652

    Google Scholar 

  • Walter J, Loach DM et al (2007) d-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9(7):1750–1760

    Article  PubMed  CAS  Google Scholar 

  • Weiss N, Schillinger U et al (1981) Lactobacillus-sharpeae sp-nov and Lactobacillus-agilis sp. nov. 2 new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. Zentralblatt Fur Bakteriologie Mikrobiologie Und Hygiene I Abteilung Originale C-Allgemeine Angewandte Und Okologische Mikrobiologie 2(3):242–253

    Google Scholar 

  • Weiss G, Rasmussen S et al (2010) Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a toll-like receptor-2-dependent mechanism. Immunology 131(2):268–281

    Article  PubMed  CAS  Google Scholar 

  • Wells JM, Robinson K et al (1996) Lactic acid bacteria as vaccine delivery vehicles. Ant Van Leeuwenh 70(2–4):317–330

    Article  CAS  Google Scholar 

  • Witkin SS, Linhares IM et al (2007) Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 21(3):347–354

    Article  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    PubMed  CAS  Google Scholar 

  • Xu J, Bjursell MK et al (2003) A genomic view of the human–bacteroides thetaiotaomicron symbiosis. Science 299(5615):2074–2076

    Article  PubMed  CAS  Google Scholar 

  • Yan F, Cao H et al (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Argimon S et al (2010) Determining the genetic diversity of lactobacilli from the oral cavity. J Microbiol Methods 82(2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Yasuda E, Serata M et al (2008) Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol 74(15):4746–4755

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Ye ZQ et al (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 11:1

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Bent SJ et al (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150(Pt 8):2565–2573

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Theunissen D et al (2010) LAB-secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genom 11:651

    Article  CAS  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M et al (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in PWOT’s laboratory is supported in part by awards from Science Foundation Ireland (Principal Investigator program, and a CSET grant to the Alimentary Pharmabiotic Centre), and from the Dept. Agriculture Fisheries and Food/Health Research Board FHRI program. We thank Page Caufield for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. O’Toole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Callaghan, J., O’Toole, P.W. (2011). Lactobacillus: Host–Microbe Relationships. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_187

Download citation

Publish with us

Policies and ethics