Skip to main content

Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants

  • Chapter
  • First Online:
Book cover Plant Viral Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 375))

Abstract

Plant viruses with ssRNA genomes provide a unique opportunity for generating expression vehicles for biopharming in plants, as constructs containing only the replication origin, with the replication-associated protein (Rep) gene provided in cis or in trans, can be replicationally amplified in vivo by several orders of magnitude, with significant accompanying increases in transcription and expression of gene(s) of interest. Appropriate replicating vectors or replicons may be derived from several different generic geminiviruses (family Geminiviridae) or nanoviruses (family Nanoviridae), for potential expression of a wide range of single or even multiple products in a wide range of plant families. The use of vacuum or other infiltration of whole plants by Agrobacterium tumefaciens suspensions has allowed the development of a set of expression vectors that rival the deconstructed RNA virus vectors in their yield and application, with some potential advantages over the latter that still need to be explored. Several modern applications of ssDNA plant vectors and their future potential will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson MN, Complainville A, Clerot D et al (2002) In planta protein–protein interactions assessed using a nanovirus-based replication and expression system. Plant J 31:767–775

    Article  PubMed  CAS  Google Scholar 

  • Aronson MN, Meyer AD, Gyorgyey J, Katul L, Vetten HJ, Gronenborn B, Timchenko T (2000) Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J Virol 74:2967–2972

    Article  PubMed  CAS  Google Scholar 

  • Bottcher B, Unseld S, Ceulemans H, Russell RB, Jeske H (2004) Geminate structures of African cassava mosaic virus. J Virol 78:6758–6765

    Article  PubMed  CAS  Google Scholar 

  • Boulton MI (1995) Agrobacterium-mediated transfer of geminiviruses to plant tissues. Methods Mol Biol 49:77–93

    PubMed  CAS  Google Scholar 

  • Briddon RW, Patil BL, Bagewadi B et al (2010) Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol Biol 10:97

    Article  PubMed  CAS  Google Scholar 

  • Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210

    Article  PubMed  CAS  Google Scholar 

  • Briddon RW, Watts J, Markham PG et al (1989) The coat protein of beet curly top virus is essential for infectivity. Virology 172:628–633

    Article  PubMed  CAS  Google Scholar 

  • Casado CG, Javier OG, Padron E, Bean SJ, McKenna R, Agbandje-McKenna M, Boulton MI (2004) Isolation and characterization of subgenomic DNAs encapsidated in “single” T = 1 isometric particles of maize streak virus. Virology 323:164–171

    Article  PubMed  CAS  Google Scholar 

  • Collens JI, Mason HS, Curtis WR (2007) Agrobacterium-mediated viral vector-amplified transient gene expression in Nicotiana glutinosa plant tissue culture. Biotechnol Prog 23:570–576

    Article  PubMed  CAS  Google Scholar 

  • Donson J, Gunn HV, Woolston CJ et al (1988) Agrobacterium-mediated infectivity of cloned digitaria streak virus DNA. Virology 162:248–250

    Article  PubMed  CAS  Google Scholar 

  • Dry IB, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093

    Article  PubMed  CAS  Google Scholar 

  • Dugdale B, Beetham PR, Becker DK et al (1998) Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in transgenic tobacco and banana cells. J Gen Virol 79(Pt 10):2301–2311

    PubMed  CAS  Google Scholar 

  • Fischer R, Vaquero-Martin C, Sack M et al (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30(Pt 2):113–116

    PubMed  CAS  Google Scholar 

  • Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613–624

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth T, Ringel M, Kocher C (2001) The size of encapsidated single-stranded DNA determines the multiplicity of African cassava mosaic virus particles. J Gen Virol 82:673–676

    PubMed  CAS  Google Scholar 

  • Gilbertson RL, Sudarshana M, Jiang H et al (2003) Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking. Plant Cell 15:2578–2591

    Article  PubMed  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Golenberg EM, Sather DN, Hancock LC et al (2009) Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods 5:9

    Article  PubMed  CAS  Google Scholar 

  • Grigoras I, Timchenko T, Katul L et al (2009) Reconstitution of authentic nanovirus from multiple cloned DNAs. J Virol 83:10778–10787

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn B, Hohn T et al (1986) “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW et al (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Gronenborn B (2004) Nanoviruses: genome organisation and protein function. Vet Microbiol 98:103–109

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56:313–329

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C (2000) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Mar CM et al (2004) Geminivirus DNA replication and cell cycle interactions. Vet Microbiol 98:111–119

    Article  PubMed  CAS  Google Scholar 

  • Halley-Stott RP, Tanzer F, Martin DP et al (2007) The complete nucleotide sequence of a mild strain of Bean yellow dwarf virus. Arch Virol 152:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140

    PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Robertson D (2004) Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156

    Article  PubMed  CAS  Google Scholar 

  • Harding RM, Burns TM, Dale JL (1991) Virus-like particles associated with banana bunchy top disease contain small single-stranded DNA. J Gen Virol 72(Pt 2):225–230

    Article  PubMed  CAS  Google Scholar 

  • Hayes RJ, Coutts RH, Buck KW (1989) Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Nucleic Acids Res 17:2391–2403

    Article  PubMed  CAS  Google Scholar 

  • Hayes RJ, Petty IT, Coutts RH et al (1988) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334:179–182

    Article  CAS  Google Scholar 

  • Heath JD, Boulton MI, Raineri DM et al (1997) Discrete regions of the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize. Mol Plant Microbe Interact 10:221–227

    Article  PubMed  CAS  Google Scholar 

  • Hefferon KL, Fan Y (2004) Expression of a vaccine protein in a plant cell line using a geminivirus-based replicon system. Vaccine 23:404–410

    Article  PubMed  CAS  Google Scholar 

  • Hefferon KL, Kipp P, Moon YS (2004) Expression and purification of heterologous proteins in plant tissue using a geminivirus vector system. J Mol Microbiol Biotechnol 7:109–114

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  PubMed  CAS  Google Scholar 

  • Hormuzdi SG, Bisaro DM (1993) Genetic analysis of beet curly top virus: evidence for three virion sense genes involved in movement and regulation of single- and double-stranded DNA levels. Virology 193:900–909

    Article  PubMed  CAS  Google Scholar 

  • Hormuzdi SG, Bisaro DM (1995) Genetic analysis of beet curly top virus: examination of the roles of L2 and L3 genes in viral pathogenesis. Virology 206:1044–1054

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L, Whaley KJ, Arntzen CJ, Mason HS, Chen Q (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106:9–17

    PubMed  CAS  Google Scholar 

  • Jupin I, de Kouchkovsky F, Gronenborn B (1994) Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204:82–90

    Article  PubMed  CAS  Google Scholar 

  • Kammann M, Matzeit V, Schmidt B, Schell J, Walden R, Gronenborn B (1991) Geminivirus-based shuttle vectors capable of replication in Escherichia coli and monocotyledonous plant cells. Gene 104:247–252

    Article  PubMed  CAS  Google Scholar 

  • Kim KI, Sunter G, Bisaro DM, Chung IS (2007) Improved expression of recombinant GFP using a replicating vector based on Beet curly top virus in leaf-disks and infiltrated Nicotiana benthamiana leaves. Plant Mol Biol 64:103–112

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73(Pt 10):2763–2766

    Article  PubMed  CAS  Google Scholar 

  • Kotlizky G, Boulton MI, Pitaksutheepong C, Davies JW, Epel BL (2000) Intracellular and intercellular movement of maize streak geminivirus V1 and V2 proteins transiently expressed as green fluorescent protein fusions. Virology 274:32–38

    Article  PubMed  CAS  Google Scholar 

  • Lageix S, Catrice O, Deragon JM, Gronenborn B, Pelissier T, Ramirez BC (2007) The nanovirus-encoded Clink protein affects plant cell cycle regulation through interaction with the retinoblastoma-related protein. J Virol 81:4177–4185

    Article  PubMed  CAS  Google Scholar 

  • Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B, Gronenborn B (1990) Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci USA 87:7752–7756

    Article  PubMed  CAS  Google Scholar 

  • Lazarowitz SG, Beachy RN (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. The Plant Cell 11:535–548

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Davies JW (1997) Maize streak virus coat protein binds single- and double-stranded DNA in vitro. J Gen Virol 78(Pt 6):1265–1270

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Oparka KJ, Davies JW (2001) Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J Gen Virol 82:35–44

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Thomas CL, Prior DA, Oparka KJ, Davies JW (1999) Maize streak virus coat protein is karyophyllic and facilitates nuclear transport of viral DNA. Mol Plant Microbe Interact 12:894–900

    Article  PubMed  CAS  Google Scholar 

  • Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469

    Article  PubMed  CAS  Google Scholar 

  • Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon R, Stanley J, Markham PG (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199

    Article  PubMed  CAS  Google Scholar 

  • Matzeit V, Schaefer S, Kammann M, Schalk HJ, Schell J, Gronenborn B (1991) Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants. Plant Cell 3:247–258

    PubMed  CAS  Google Scholar 

  • Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson AL, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 8:53

    Article  PubMed  CAS  Google Scholar 

  • Mor TS, Moon YS, Palmer KE, Mason HS (2003) Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol Bioeng 81:430–437

    Article  PubMed  CAS  Google Scholar 

  • Muangsan N, Robertson D (2004) Geminivirus vectors for transient gene silencing in plants. Methods Mol Biol 265:101–115

    PubMed  CAS  Google Scholar 

  • Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Needham PD, Atkinson RG, Morris BAM, Gardner RC, Gleave AP (1998) GUS expression patterns from a tobacco yellow dwarf virus-based episomal vector. Plant Cell Rep 17:631–639

    Article  CAS  Google Scholar 

  • Nishigawa H, Miyata S, Oshima K, Sawayanagi T, Komoto A, Kuboyama T, Matsuda I, Tsuchizaki T, Namba S (2001) In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147:507–513

    PubMed  CAS  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    Article  PubMed  CAS  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1996) The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224:390–404

    Article  PubMed  CAS  Google Scholar 

  • Palmer KE, Rybicki EP (1997) The use of geminiviruses in biotechnology and plant molecular biology, with particular focus on mastreviruses. Plant Sci 129:115–130

    Article  CAS  Google Scholar 

  • Palmer KE, Rybicki EP (1998) The molecular biology of mastreviruses. Adv Virus Res 50:183–234

    Article  PubMed  CAS  Google Scholar 

  • Palmer KE, Rybicki EP (2001) Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants. Arch Virol 146:1089–1104

    Article  PubMed  CAS  Google Scholar 

  • Palmer KE, Schnippenkoetter WH, Rybicki EP (1998) Geminivirus isolation and DNA extraction. Methods Mol Biol 81:41–52

    PubMed  CAS  Google Scholar 

  • Palmer KE, Thomson JA, Rybicki EP (1999) Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Arch Virol 144:1345–1360

    Article  PubMed  CAS  Google Scholar 

  • Pascal E, Goodlove PE, Wu LC, Lazarowitz SG (1993) Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5:795–807

    PubMed  CAS  Google Scholar 

  • Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lazarowitz SG (1994) The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6:995–1006

    PubMed  CAS  Google Scholar 

  • Paszkowski U, Zhang SB, Potrykus I, Paszkowski J (1993) Replication of the DNA A component of African cassava mosaic virus in a heterologous system. J Gen Virol 74(Pt 12):2725–2729

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Ward BM, Lazarowitz SG (1998) The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol 72:9247–9256

    PubMed  CAS  Google Scholar 

  • Raghavan V, Malik PS, Choudhury NR, Mukherjee SK (2004) The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Reavy B, Bagirova S, Chichkova NV, Fedoseeva SV, Kim SH, Vartapetian AB, Taliansky ME (2007) Caspase-resistant VirD2 protein provides enhanced gene delivery and expression in plants. Plant Cell Rep 26:1215–1219

    Article  PubMed  CAS  Google Scholar 

  • Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8:38–46

    Article  PubMed  CAS  Google Scholar 

  • Rekab D, Carraro L, Schneider B, Seemuller E, Chen J, Chang CJ, Locci R, Firrao G (1999) Geminivirus-related extrachromosomal DNAs of the X-clade phytoplasmas share high sequence similarity. Microbiology 145(Pt 6):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Rochester DE, Kositratana W, Beachy RN (1990) Systemic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178:520–526

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2009) RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340

    Article  PubMed  CAS  Google Scholar 

  • Rojas MR, Noueiry AO, Lucas WJ, Gilbertson RL (1998) Bean Dwarf mosaic geminivirus movement proteins recognize DNA in a form- and size-specific manner. Cell 95:105–113

    Article  PubMed  CAS  Google Scholar 

  • Rosario K, Duffy S, Breitbart M (2009) Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 90:2418–2424

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP (2009a) Plant-produced vaccines: promise and reality. Drug Discov Today 14:16–24

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP (2009b) Third international conference on plant-based vaccines and antibodies. Expert Rev Vaccines 8:1151–1155

    Article  PubMed  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895

    Article  PubMed  CAS  Google Scholar 

  • Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152

    Article  PubMed  CAS  Google Scholar 

  • Schob H, Kunz C, Meins F Jr (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 256:581–585

    Article  PubMed  CAS  Google Scholar 

  • Selth LA, Randles JW, Rezaian MA (2002) Agrobacterium tumefaciens supports DNA replication of diverse geminivirus types. FEBS Lett 516:179–182

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Hohn B (1992) Excision of a transposable element from a viral vector introduced into maize plants by agroinfection. Plant J 2:35–42

    PubMed  CAS  Google Scholar 

  • Shen WH, Hohn B (1994) Amplification and expression of the beta-glucuronidase gene in maize plants by vectors based on maize streak virus. Plant J 5:227–236

    Article  CAS  Google Scholar 

  • Shepherd DN, Martin DP, van der Walt E, Dent K, Varsani A, Rybicki EP (2010) Maize streak virus: an old and complex ‘emerging’ pathogen. Mol Plant Pathol 11:1–12

    Article  PubMed  CAS  Google Scholar 

  • Stanley J (1993) Geminiviruses: plant viral vectors. Curr Opin Genet Dev 3:91–96

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) International Committee on the Taxonomy of Viruses (VIIIth Report). Elsevier/Academic Press, London, pp 301–326

    Google Scholar 

  • Stanley J, Latham JR, Pinner MS, Bedford I, Markham PG (1992) Mutational analysis of the monopartite geminivirus beet curly top virus. Virology 191:396–405

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Otsuki Y, Saji S, Hirochika H (1994) Transposition of the maize Ds element from a viral vector to the rice genome. Plant J 5:863–871

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishikawa M, Meshi T, Okada Y (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6:307–311

    PubMed  CAS  Google Scholar 

  • Tamilselvi D, Anand G, Swarup S (2004) A geminivirus AYVV-derived shuttle vector for tobacco BY2 cells. Plant Cell Rep 23:81–90

    Article  PubMed  CAS  Google Scholar 

  • Thomas JE, Dietzgen RG (1991) Purification, characterization and serological detection of virus-like particles associated with banana bunchy top disease in Australia. J Gen Virol 72(Pt 2):217–224

    Article  PubMed  CAS  Google Scholar 

  • Thomas JE et al (2010) Two novel mastreviruses from chickpea (Cicer arietinum) in Australia. Arch Virol 155(11):1777–1788 (Epub 2010 Aug 24)

    Article  PubMed  CAS  Google Scholar 

  • Timchenko T, Katul L, Aronson M, Vega-Arreguin JC, Ramirez BC, Vetten HJ, Gronenborn B (2006) Infectivity of nanovirus DNAs: induction of disease by cloned genome components of Faba bean necrotic yellows virus. J GenVirol 87:1735–1743

    CAS  Google Scholar 

  • Timmermans MCP, Das OP, Messing J (1994) Geminiviruses and their uses as extrachromosomal replicons. Annu Rev Plant Physiol Plant Mol Biol 45:79–112

    Article  CAS  Google Scholar 

  • Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30:107–114

    Article  PubMed  CAS  Google Scholar 

  • Vetten HJ, Chu PWG, Dale JL, Harding R, Hu J, Katul L, Kojima M, Randles JW, Sano Y, Thomas JE (2005) Nanoviridae In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, 8th report of the international committee on taxonomy of viruses, Elsevier/Academic Press, p 1259

    Google Scholar 

  • von Arnim A, Stanley J (1992) Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology 187:555–564

    Article  Google Scholar 

  • Wanitchakorn R, Hafner GJ, Harding RM, Dale JL (2000) Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 81:299–306

    PubMed  CAS  Google Scholar 

  • Ward A, Etessami P, Stanley J (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J 7:1583–1587

    PubMed  CAS  Google Scholar 

  • Wartig L, Kheyr-Pour A, Noris E, de Kouchovsky F, Jouanneau F, Gronenborn B, Jupin I (1997) Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1,V2, and C2 ORFs in viral pathogenesis. Virology 228:132–140

    Article  PubMed  CAS  Google Scholar 

  • Wirtz U, Osborne B, Baker B (1997) Ds excision from extrachromosomal geminivirus vector DNA is coupled to vector DNA replication in maize. Plant J 11:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Yang SH, Lai YC, Lin NS, Hsu YH, Hu CC (2007) Unit-length, single-stranded circular DNAs of both polarity of begomoviruses are generated in Escherichia coli harboring phage M13-cloned begomovirus genome with single copy of replication origin. Virus Res 125:14–28

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA 107:8387–8392

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R (2006) The potential of plant virus vectors for vaccine production. Drugs RD 7:203–217

    Article  CAS  Google Scholar 

  • Zhang W, Olson NH, Baker TS, Faulkner L, gbandje-McKenna M, Boulton MI, Davies JW, McKenna R (2001) Structure of the Maize streak virus geminate particle. Virology 279:471–477

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Mason H (2006) Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnol Bioeng 93:271–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial assistance from the University of Cape Town, the National Research Foundation and the South African AIDS Vaccine Initiative, Guy Regnard and James Dale for illustrations, and lab members past and present for their sterling work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Rybicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rybicki, E.P., Martin, D.P. (2011). Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants. In: Palmer, K., Gleba, Y. (eds) Plant Viral Vectors. Current Topics in Microbiology and Immunology, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_185

Download citation

Publish with us

Policies and ethics