Skip to main content

Interaction of Ricin and Shiga Toxins with Ribosomes

  • Chapter
  • First Online:
Book cover Ricin and Shiga Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 357))

Abstract

Ricin and Shiga toxins designated as ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine (A4324 in rat 28S rRNA) in the conserved α-sarcin/ricin loop of the large rRNA, inhibiting protein synthesis. Evidence obtained from a number of studies suggests that interaction with ribosomal proteins plays an important role in the catalytic activity and ribosome specificity of RIPs. This review summarizes the recent developments in identification of the ribosomal proteins that interact with ricin and Shiga toxins and the principles governing these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford SC, Pearson JD, Carette A, Ingham RJ, Howard PL (2009) Alpha-sarcin catalytic activity is not required for cytotoxicity. BMC Biochem 10:9

    Google Scholar 

  • Alvarez-Garcia E, Diago-Navarro E, Herrero-Galan E, Garcia-Ortega L, Lopez-Villarejo J, Olmo N, Diaz-Orejas R, Gavilanes JG, Martinez-Del-Pozo A (2011) The ribonucleolytic activity of the ribotoxin alpha-sarcin is not essential for in vitro protein biosynthesis inhibition. Biochimica et Biophysica Acta 1814:1377–1382

    Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. JAMA 294:2342–2351

    Article  PubMed  CAS  Google Scholar 

  • Ayub MJ, Smulski CR, Ma KW, Levin MJ, Shaw PC, Wong KB (2008) The C-terminal end of P proteins mediates ribosome inactivation by trichosanthin but does not affect the pokeweed antiviral protein activity. Biochem Biophys Res Commun 369:314–319

    Article  PubMed  CAS  Google Scholar 

  • Ballesta JP, Remacha M (1996) The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. Prog Nucleic Acid Res Mol Biol 55:157–193

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282

    Article  PubMed  CAS  Google Scholar 

  • Bernado P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M (2010) Structure and dynamics of ribosomal protein L12: an ensemble model based on SAXS and NMR relaxation. Biophys J 98:2374–2382

    Article  PubMed  CAS  Google Scholar 

  • Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A, Peters G, Karch H (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany: a microbiological study. Lancet Infect Dis 11:671–676

    Google Scholar 

  • Boyce TG, Swerdlow DL, Griffin PM (1995) Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 333:364–368

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Rambelli F, Zamboni M, Montanaro L, Sperti S (1989) Effect of alpha-sarcin and ribosome-inactivating proteins on the interaction of elongation factors with ribosomes. Biochem J 257:723–727

    PubMed  CAS  Google Scholar 

  • Brigotti M, Carnicelli D, Alvergna P, Mazzaracchio R, Sperti S, Montanaro L (1997) The RNA-N-glycosidase activity of Shiga-like toxin I: kinetic parameters of the native and activated toxin. Toxicon 35:1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Cawley DB, Hedblom ML, Houston LL (1979) Protection and rescue of ribosomes from the action of ricin A chain. Biochemistry 18:2648–2654

    Article  PubMed  CAS  Google Scholar 

  • Chan SH, Hung FS, Chan DS, Shaw PC (2001) Trichosanthin interacts with acidic ribosomal proteins P0 and P1 and mitotic checkpoint protein MAD2B. Eur J Biochem 268:2107–2112

    Article  PubMed  CAS  Google Scholar 

  • Chan DS, Chu LO, Lee KM, Too PH, Ma KW, Sze KH, Zhu G, Shaw PC, Wong KB (2007) Interaction between trichosanthin, a ribosome-inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analyses. Nucleic Acids Res 35:1660–1672

    Article  PubMed  CAS  Google Scholar 

  • Cheung MC, Revers L, Perampalam S, Wei X, Kiarash R, Green DE, Abdul-Wahid A, Gariepy J (2010) An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo. Mol Cancer 9:28

    Article  PubMed  CAS  Google Scholar 

  • Chiou JC, Li XP, Remacha M, Ballesta JP, Tumer NE (2008) The ribosomal stalk is required for ribosome binding, depurination of the rRNA and cytotoxicity of ricin A chain in Saccharomyces cerevisiae. Mol Microbiol 70:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Chiou JC, Li XP, Remacha M, Ballesta JP, Tumer NE (2011) Shiga toxin 1 is more dependent on the P proteins of the ribosomal stalk for depurination activity than Shiga toxin 2. Int. J Biochem Cell Biol (In press)

    Google Scholar 

  • Clementi N, Chirkova A, Puffer B, Micura R, Polacek N (2010) Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat Chem Biol 6:344–351

    Article  PubMed  CAS  Google Scholar 

  • Conrady DG, Flagler MJ, Friedmann DR, Vander Wielen BD, Kovall RA, Weiss AA, Herr AB (2010) Molecular basis of differential B-pentamer stability of shiga toxins 1 and 2. PLoS One 5:e15153

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Munishkin A, Chan YL, Ren Z, Wool IG, Steitz TA (1998) Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci USA 95:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Wool IG, Munishkin A (1999) The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol 292:275–287

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan YL (2003) The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Nucleic Acids Res 31:6806–6818

    Article  PubMed  CAS  Google Scholar 

  • Di R, Tumer NE (2005) Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol. Mol Plant Microbe Interact 18:762–770

    Article  PubMed  CAS  Google Scholar 

  • Di R, Kyu E, Shete V, Saidasan H, Kahn PC, Tumer NE (2011) Identification of amino acids critical for the cytotoxicity of Shiga toxin 1 and 2 in Saccharomyces cerevisiae. Toxicon 57:525–539

    Article  PubMed  CAS  Google Scholar 

  • Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262:8128–8130

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. Nucleic Acids Symp Ser 19:139–142

    PubMed  CAS  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes: the site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    PubMed  CAS  Google Scholar 

  • Endo Y, Chan YL, Lin A, Tsurugi K, Wool IG (1988) The cytotoxins alpha-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. J Biol Chem 263:7917–7920

    PubMed  CAS  Google Scholar 

  • Ferens WA, Hovde CJ (2000) Antiviral activity of shiga toxin 1: suppression of bovine leukemia virus-related spontaneous lymphocyte proliferation. Infect Immun 68:4462–4469

    Article  PubMed  CAS  Google Scholar 

  • Ferens WA, Hovde CJ (2007) The non-toxic A subunit of Shiga toxin type 1 prevents replication of bovine immunodeficiency virus in infected cells. Virus Res 125:29–41

    Article  PubMed  CAS  Google Scholar 

  • Ferens WA, Cobbold R, Hovde CJ (2006) Intestinal Shiga toxin-producing Escherichia coli bacteria mitigate bovine leukemia virus infection in experimentally infected sheep. Infect Immun 74:2906–2916

    Article  PubMed  CAS  Google Scholar 

  • Ferens WA, Halver M, Gustin KE, Ott T, Hovde CJ (2007) Differential sensitivity of viruses to the antiviral activity of Shiga toxin 1 A subunit. Virus Res 125:104–108

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Puentes C, Vazquez D (1977) Effects of some proteins that inactivate the eukaryotic ribosome. FEBS Lett 78:143–146

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Puentes C, Benson S, Olsnes S, Pihl A (1976) Protective effect of elongation factor 2 on the inactivation of ribosomes by the toxic lectins abrin and ricin. Eur J Biochem 64:437–443

    Article  PubMed  CAS  Google Scholar 

  • Fraser ME, Chernaia MM, Kozlov YV, James MN (1994) Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nat Struct Biol 1:59–64

    Article  PubMed  CAS  Google Scholar 

  • Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O’Brien AD, James MN (2004) Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J Biol Chem 279:27511–27517

    Article  PubMed  CAS  Google Scholar 

  • Fraser ME, Cherney MM, Marcato P, Mulvey GL, Armstrong GD, James MN (2006) Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:627–630

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ortega L, Alvarez-Garcia E, Gavilanes JG, Martinez-del-Pozo A, Joseph S (2010) Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Res 38:4108–4119

    Article  PubMed  CAS  Google Scholar 

  • Garred O, van Deurs B, Sandvig K (1995) Furin-induced cleavage and activation of Shiga toxin. J Biol Chem 270:10817–10821

    Article  PubMed  CAS  Google Scholar 

  • Gluck A, Endo Y, Wool IG (1992) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis: Analysis with tetraloop mutants. J Mol Biol 226:411–424

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo P, Reboud JP (2003) The puzzling lateral flexible stalk of the ribosome. Biol Cell 95:179–193

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo P, Lavergne JP, Reboud JP (2001) Pivotal role of the P1 N-terminal domain in the assembly of the mammalian ribosomal stalk and in the proteosynthetic activity. J Biol Chem 276:19762–19769

    Article  PubMed  CAS  Google Scholar 

  • Grela P, Bernado P, Svergun D, Kwiatowski J, Abramczyk D, Grankowski N, Tchorzewski M (2008) Structural relationships among the ribosomal stalk proteins from the three domains of life. J Mol Evol 67:154–167

    Article  PubMed  CAS  Google Scholar 

  • Guarinos E, Remacha M, Ballesta JP (2001) Asymmetric interactions between the acidic P1 and P2 proteins in the Saccharomyces cerevisiae ribosomal stalk. J Biol Chem 276:32474–32479

    Article  PubMed  CAS  Google Scholar 

  • Guarinos E, Santos C, Sanchez A, Qiu DY, Remacha M, Ballesta JP (2003) Tag-mediated fractionation of yeast ribosome populations proves the monomeric organization of the eukaryotic ribosomal stalk structure. Mol Microbiol 50:703–712

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci USA 79:5935–5938

    Article  PubMed  CAS  Google Scholar 

  • Head SC, Karmali MA, Lingwood CA (1991) Preparation of VT1 and VT2 hybrid toxins from their purified dissociated subunits: evidence for B subunit modulation of a subunit function. J Biol Chem 266:3617–3621

    PubMed  CAS  Google Scholar 

  • Hudak KA, Dinman JD, Tumer NE (1999) Pokeweed antiviral protein accesses ribosomes by binding to L3. J Biol Chem 274:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Hudak KA, Parikh BA, Di R, Baricevic M, Santana M, Seskar M, Tumer NE (2004) Generation of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: evidence that ribosome depurination is not sufficient for cytotoxicity. Nucleic Acids Res 32:4244–4256

    Article  PubMed  CAS  Google Scholar 

  • Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea XI: Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163:1391–1404

    Article  PubMed  CAS  Google Scholar 

  • Katzin BJ, Collins EJ, Robertus JD (1991) Structure of ricin A-chain at 2.5 A. Proteins 10:251–259

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Mlsna D, Monzingo AF, Ready MP, Frankel A, Robertus JD (1992) Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry 31:3294–3296

    Article  PubMed  CAS  Google Scholar 

  • Konowalchuk J, Speirs JI, Stavric S (1977) Vero response to a cytotoxin of Escherichia coli. Infect Immun 18:775–779

    PubMed  CAS  Google Scholar 

  • Korennykh AV, Piccirilli JA, Correll CC (2006) The electrostatic character of the ribosomal surface enables extraordinarily rapid target location by ribotoxins. Nat Struct Mol Biol 13:436–443

    Article  PubMed  CAS  Google Scholar 

  • Korennykh AV, Correll CC, Piccirilli JA (2007) Evidence for the importance of electrostatics in the function of two distinct families of ribosome inactivating toxins. RNA 13:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Kreitman RJ, Arons E, Stetler-Stevenson M, Fitzgerald DJ, Wilson WH, Pastan I (2011) Recombinant immunotoxins and other therapies for relapsed/refractory hairy cell leukemia. Leuk lymphoma 52(2):82–86

    Article  PubMed  CAS  Google Scholar 

  • LaCasse EC, Bray MR, Patterson B, Lim WM, Perampalam S, Radvanyi LG, Keating A, Stewart AK, Buckstein R, Sandhu JS, Miller N, Banerjee D, Singh D, Belch AR, Pilarski LM, Gariepy J (1999) Shiga-like toxin-1 receptor on human breast cancer, lymphoma, and myeloma and absence from CD34(+) hematopoietic stem cells: implications for ex vivo tumor purging and autologous stem cell transplantation. Blood 94:2901–2910

    PubMed  CAS  Google Scholar 

  • Lee KM, Yu CW, Chan DS, Chiu TY, Zhu G, Sze KH, Shaw PC, Wong KB (2010) Solution structure of the dimerization domain of ribosomal protein P2 provides insights for the structural organization of eukaryotic stalk. Nucleic Acids Res 38:5206–5216

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Baricevic M, Saidasan H, Tumer NE (2007) Ribosome depurination is not sufficient for ricin-mediated cell death in Saccharomyces cerevisiae. Infect Immun 75:417–428

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Chiou JC, Remacha M, Ballesta JP, Tumer NE (2009) A two-step binding model proposed for the electrostatic interactions of ricin a chain with ribosomes. Biochemistry 48:3853–3863

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Grela P, Krokowski D, Tchorzewski M, Tumer NE (2010) Pentameric organization of the ribosomal stalk accelerates recruitment of ricin a chain to the ribosome for depurination. J Biol Chem 285:41463–41471

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262:8834–8839

    PubMed  CAS  Google Scholar 

  • McCluskey AJ, Poon GM, Bolewska-Pedyczak E, Srikumar T, Jeram SM, Raught B, Gariepy J (2008) The catalytic subunit of Shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain. J Mol Biol 378:375–386

    Article  PubMed  CAS  Google Scholar 

  • Mohr D, Wintermeyer W, Rodnina MV (2002) GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41:12520–12528

    Article  PubMed  CAS  Google Scholar 

  • Montanaro L, Sperti S, Mattioli A, Testoni G, Stirpe F (1975) Inhibition by ricin of protein synthesis in vitro: inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem J 146:127–131

    PubMed  CAS  Google Scholar 

  • Munishkin A, Wool IG (1997) The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc Nat Acad Sci USA 94:12280–12284

    Article  PubMed  CAS  Google Scholar 

  • Naganuma T, Nomura N, Yao M, Mochizuki M, Uchiumi T, Tanaka I (2010) Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes. J Biol Chem 285:4747–4756

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Kiyokawa N, Katagiri YU, Taguchi T, Suzuki T, Sekino T, Mimori K, Ebata T, Saito M, Nakao H, Takeda T, Fujimoto J (2001) Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J Biol Chem 276:42915–42922

    Article  PubMed  CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    PubMed  CAS  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  PubMed  CAS  Google Scholar 

  • Nolan RD, Grasmuk H, Drews J (1976) The binding of tritiated elongation-factors 1 and 2 to ribosomes from Krebs II mouse ascites-tumore cells: the influence of various antibiotics and toxins. Eur J Biochem 64:69–75

    Article  PubMed  CAS  Google Scholar 

  • Nusspaumer G, Remacha M, Ballesta JP (2000) Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO J 19:6075–6084

    Article  PubMed  CAS  Google Scholar 

  • Nygard O, Nilsson L (1989) Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2. Eur J Biochem 179:603–608

    Article  PubMed  CAS  Google Scholar 

  • O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226:694–696

    Article  PubMed  Google Scholar 

  • O’Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, Lindberg AA, Keusch GT (1992) Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 180:65–94

    Article  PubMed  Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Pihl A (1972a) Inhibition of peptide chain elongation. Nature 238:459–461

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Pihl A (1972b) Ricin—a potent inhibitor of protein synthesis. FEBS Lett 20:327–329

    Article  PubMed  CAS  Google Scholar 

  • Parikh BA, Tumer NE (2004) Antiviral activity of ribosome inactivating proteins in medicine. Mini Rev Med Chem 4:523–543

    Article  PubMed  CAS  Google Scholar 

  • Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479

    PubMed  CAS  Google Scholar 

  • Pickering LK, Obrig TG, Stapleton FB (1994) Hemolytic-uremic syndrome and enterohemorrhagic Escherichia coli. Pediatr Infect Dis J 13:459–475 quiz 476

    Article  PubMed  CAS  Google Scholar 

  • Plantinga MJ, Korennykh AV, Piccirilli JA, Correll CC (2011) The ribotoxin restrictocin recognizes its RNA substrate by selective engagement of active site residues. Biochemistry 50:3004–3013

    Article  PubMed  CAS  Google Scholar 

  • Rajamohan F, Mao C, Uckun FM (2001a) Binding interactions between the active center cleft of recombinant pokeweed antiviral protein and the alpha-sarcin/ricin stem loop of ribosomal RNA. J Biol Chem 276:24075–24081

    Article  PubMed  CAS  Google Scholar 

  • Rajamohan F, Ozer Z, Mao C, Uckun FM (2001b) Active center cleft residues of pokeweed antiviral protein mediate its high-affinity binding to the ribosomal protein L3. Biochemistry 40:9104–9114

    Article  PubMed  CAS  Google Scholar 

  • Ready MP, Kim Y, Robertus JD (1991) Site-directed mutagenesis of ricin A-chain and implications for the mechanism of action. Proteins 10:270–278

    Article  PubMed  CAS  Google Scholar 

  • Remacha M, Jimenez-Diaz A, Santos C, Briones E, Zambrano R, Rodriguez Gabriel MA, Guarinos E, Ballesta JP (1995) Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk: new structural and functional aspects. Biochem Cell Biol 73:959–968

    Article  PubMed  CAS  Google Scholar 

  • Rutenber E, Katzin BJ, Ernst S, Collins EJ, Mlsna D, Ready MP, Robertus JD (1991) Crystallographic refinement of ricin to 2.5 A. Proteins 10:240–250

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, van Deurs B (1996) Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev 76:949–966

    PubMed  CAS  Google Scholar 

  • Sandvig K, van Deurs B (2002) Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 529:49–53

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12:865–872

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Garred O, Prydz K, Kozlov JV, Hansen SH, van Deurs B (1992) Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358:510–512

    Article  PubMed  CAS  Google Scholar 

  • Siegler RL, Obrig TG, Pysher TJ, Tesh VL, Denkers ND, Taylor FB (2003) Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr Nephrol 18:92–96

    PubMed  Google Scholar 

  • Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JP, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM (2006) Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3:26

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  • Suh JK, Hovde CJ, Robertus JD (1998) Shiga toxin attacks bacterial ribosomes as effectively as eucaryotic ribosomes. Biochemistry 37:9394–9398

    Article  PubMed  CAS  Google Scholar 

  • Szewczak AA, Moore PB (1995) The sarcin/ricin loop, a modular RNA. J Mol Biol 247:81–98

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Tchorzewski M, Krokowski D, Boguszewska A, Liljas A, Grankowski N (2003) Structural characterization of yeast acidic ribosomal P proteins forming the P1A–P2B heterocomplex. Biochemistry 42:3399–3408

    Article  PubMed  CAS  Google Scholar 

  • Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O’Brien AD, Samuel JE (1993) Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect Immun 61:3392–3402

    PubMed  CAS  Google Scholar 

  • Too PH, Ma MK, Mak AN, Wong YT, Tung CK, Zhu G, Au SW, Wong KB, Shaw PC (2009) The C-terminal fragment of the ribosomal P protein complexed to trichosanthin reveals the interaction between the ribosome-inactivating protein and the ribosome. Nucleic Acids Res 37:602–610

    Article  PubMed  CAS  Google Scholar 

  • Tumer NE, Hudak K, Di R, Coetzer C, Wang P, Zoubenko O (1999) Pokeweed antiviral protein and its applications. Curr Top Microbiol Immunol 240:139–158

    PubMed  CAS  Google Scholar 

  • Uchiumi T, Traut RR, Kominami R (1990) Monoclonal antibodies against acidic phosphoproteins P0, P1, and P2 of eukaryotic ribosomes as functional probes. J Biol Chem 265:89–95

    PubMed  CAS  Google Scholar 

  • Uchiumi T, Hori K, Nomura T, Hachimori A (1999) Replacement of L7/L12.L10 protein complex in Escherichia coli ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding. J Biol Chem 274:27578–27582

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Honma S, Nomura T, Dabbs ER, Hachimori A (2002) Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. J Biol Chem 277:3857–3862

    Article  PubMed  CAS  Google Scholar 

  • Vater CA, Bartle LM, Leszyk JD, Lambert JM, Goldmacher VS (1995) Ricin A chain can be chemically cross-linked to the mammalian ribosomal proteins L9 and L10e. J Biol Chem 270:12933–12940

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V (2010) The mechanism for activation of GTP hydrolysis on the ribosome. Science 330:835–838

    Article  PubMed  CAS  Google Scholar 

  • Waddell T, Head S, Petric M, Cohen A, Lingwood C (1988) Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem Biophys Res Commun 152(2):674–679

    Article  PubMed  CAS  Google Scholar 

  • Wahl MC, Moller W (2002) Structure and function of the acidic ribosomal stalk proteins. Curr Protein Pept Sci 3:93–106

    Article  PubMed  CAS  Google Scholar 

  • Walsh TA, Morgan AE, Hey TD (1991) Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize: novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J Biol Chem 266:23422–23427

    PubMed  CAS  Google Scholar 

  • Wool IG, Gluck A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Gerczei T, Glover LT, Correll CC (2001) Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat Struct Biol 8:968–973

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Mak AN, Shaw PC, Sze KH (2010) Solution structure of an active mutant of maize ribosome-inactivating protein (MOD) and its interaction with the ribosomal stalk protein P2. J Mol Biol 395:897–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants AI072425 and AI082120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilgun E. Tumer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tumer, N.E., Li, XP. (2011). Interaction of Ricin and Shiga Toxins with Ribosomes. In: Mantis, N. (eds) Ricin and Shiga Toxins. Current Topics in Microbiology and Immunology, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_174

Download citation

Publish with us

Policies and ethics