Skip to main content

Ricin Vaccine Development

  • Chapter
  • First Online:
Ricin and Shiga Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 357))

Abstract

In this chapter we discuss vaccines to protect against the highly toxic plant-derived toxin, ricin. Due to its prevalence, ease of use, and stability it has been used in sporadic incidents of espionage. There is also concern that it will be used as an agent of bioterrorism. As a result there has been a great deal of interest in developing a safe vaccine or antidote to protect humans, and in particular soldiers and first responders. Although multiple types of vaccines have been tested, at this time two recombinant vaccines are the leading candidates for the national vaccine stockpile. In terms of passive post-exposure protection, monoclonal neutralizing antibodies that passively protect animals are also under development. These vaccines and antibodies are discussed in the context of the toxicity and structure of ricin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. JAMA 294:2342–2351

    Article  PubMed  CAS  Google Scholar 

  • Baluna R, Vitetta ES (1999) An in vivo model to study immunotoxin-induced vascular leak in human tissue. J Immunother 22:41–47

    Article  PubMed  CAS  Google Scholar 

  • Baluna R, Coleman E, Jones C, Ghetie V, Vitetta ES (2000) The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp Cell Res 258:417–424

    Article  PubMed  CAS  Google Scholar 

  • Baluna R, Ghetie V, Oppenheimer-Marks N, Vitetta ES (1996) Fibronectin inhibits the cytotoxic effect of ricin A chain on endothelial cells. Int J Immunopharm 18:355–361

    Article  CAS  Google Scholar 

  • Baluna R, Rizo J, Gordon BE, Ghetie V, Vitetta ES (1999) Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A 96:3957–3962

    Article  PubMed  CAS  Google Scholar 

  • Blakey DC, Thorpe PE (1986) Effect of chemical deglycosylation on the in vivo fate of ricin A-chain. Cancer Drug Deliv 3:189–196

    Article  PubMed  CAS  Google Scholar 

  • Carra JH, Wannemacher RW, Tammariello RF, Lindsey CY, Dinterman RE, Schokman RD, Smith LA (2007) Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 25:4149–4158

    Article  PubMed  CAS  Google Scholar 

  • Chanh TC, Hewetson JF (1995) Protection against ricin intoxication in vivo by anti-idiotype vaccination. Vaccine 13:479–485

    Article  PubMed  CAS  Google Scholar 

  • Compton JR, Legler PM, Clingan BV, Olson MA, and Millard CB (2011) Introduction of a disulfide bond leads to stabilization and crystallization of a ricin immunogen. Proteins 79:1048–1060

    Google Scholar 

  • Cook DL, David J, Griffiths GD (2006) Retrospective identification of ricin in animal tissues following administration by pulmonary and oral routes. Toxicology 223:61–70

    Article  PubMed  CAS  Google Scholar 

  • David J, Wilkinson LJ, Griffiths GD (2009) Inflammatory gene expression in response to sub-lethal ricin exposure in Balb/c mice. Toxicology 264:119–130

    Article  PubMed  CAS  Google Scholar 

  • Eiklid K, Olsnes S, Pihl A (1980) Entry of lethal doses of abrin,ricin and modeccin into the cytosol of HeLa cells. Exp Cell Res 126:321–326

    Article  PubMed  CAS  Google Scholar 

  • Farah RA, Clinchy B, Herrera L, Vitetta ES (1998) The development of monoclonal antibodies for the therapy of cancer. Crit Rev Eukaryot Gene Expr 8:321–356

    Article  PubMed  CAS  Google Scholar 

  • Flexner S (1897) The histological changes produced by ricin and abrin intoxications. J Exp Med 2:197–216

    Article  PubMed  CAS  Google Scholar 

  • Foxwell BM, Blakey DC, Brown AN, Donovan TA, Thorpe PE (1987) The preparation of deglycosylated ricin by recombination of glycosidase-treated A- and B-chains: effects of deglycosylation on toxicity and in vivo distribution. Biochim Biophys Acta 923:59–65

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted Toxins. Clin Cancer Res 6:326–334

    PubMed  CAS  Google Scholar 

  • Franz DR and Jaax NK (1997) Ricin Toxin, in Textbook of Military Medicine, In: Zajtchuk R and Bellamy RF (eds) Office of the Surgeon General at TMM Publications, Borden Inst, Walter Reed Army Medical Center: Washington, DC p 631–642

    Google Scholar 

  • Griffiths GD, Bailey SC, Hambrook JL, Keyte MP (1998) Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations. Vaccine 16:530–535

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD, Bailey SC, Hambrook JL, Keyte M, Jayasekera P, Miles J, Williamson E (1997) Liposomally-encapsulated ricin toxoid vaccine delivered intratracheally elicits a good immune response and protects against a lethal pulmonary dose of ricin toxin. Vaccine 15:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD, Lindsay CD, Allenby AC, Bailey SC, Scawin JW, Rice P, Upshall DG (1995) Protection against inhalation toxicity of ricin and abrin by immunisation. Hum Exp Toxicol 14:155–164

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD, Phillips GJ, Bailey SC (1999) Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine 17:2562–2568

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD, Phillips GJ, and Holley J (2007) Inhalation toxicology of ricin preparations: animal models, prophylactic and therapeutic approaches to protection. Inhal Toxicol 19:873–887

    Google Scholar 

  • Kende M, Yan C, Hewetson J, Frick MA, Rill WL, Tammariello R (2002) Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. Vaccine 20:1681–1691

    Article  PubMed  CAS  Google Scholar 

  • Kende M, Del Giudice G, Rivera N, Hewetson J (2006) Enhancement of intranasal vaccination in mice with deglycosylated chain A ricin by LTR72, a novel mucosal adjuvant. Vaccine 24:2213–2221

    Article  PubMed  CAS  Google Scholar 

  • Kende M, Tan X, Wlazlowski C, Williams R, Lindsey C, Del Giudice G (2007) Enhancement of intranasal vaccination with recombinant chain A ricin vaccine (rRV) in mice by the mucosal adjuvants LTK63 and LTR72. Vaccine 25:3219–3227

    Article  PubMed  CAS  Google Scholar 

  • Legler PM, Brey RN, Smallshaw JE, Vitetta ES, and Millard CB Structure of RiVax, a recombinant ricin vaccine Journal? [submitted Acta Crystallographica Section D]

    Google Scholar 

  • Marconescu PS, Smallshaw JE, Pop LM, Ruback SL, Vitetta ES (2010) Intradermal administration of RiVax protects animals from mucosal and systemic ricin intoxication. Vaccine 28:5315–5322

    Article  PubMed  CAS  Google Scholar 

  • Marsden CJ, Knight S, Smith DC, Day PJ, Roberts LM, Phillips GJ, Lord JM (2004) Insertional mutagenesis of ricin A chain: a novel route to an anti-ricin vaccine. Vaccine 22:2800–2805

    Article  PubMed  CAS  Google Scholar 

  • Marsden CJ, Smith DC, Roberts LM, Lord JM (2005) Ricin: current understanding and prospects for an antiricin vaccine. Expert Rev Vaccines. 4:229–237

    Article  PubMed  CAS  Google Scholar 

  • McHugh CA, Tammariello RF, Millard CB, Carra JH (2004) Improved stability of a protein vaccine through elimination of a partially unfolded state. Protein Sci 13:2736–2743

    Article  PubMed  CAS  Google Scholar 

  • Neal LM, McCarthy EA, Morris CR, Mantis NJ (2011) Vaccine-induced intestinal immunity to ricin toxin in the absence of secretory IgA. Vaccine 29:681–689

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  PubMed  CAS  Google Scholar 

  • Olson MA, Carra JH, Roxas-Duncan V, Wannemacher RW, Smith LA, Millard CB (2004) Finding a new vaccine in the ricin protein fold. Protein Eng Des Sel 17:391–397

    Article  PubMed  CAS  Google Scholar 

  • Pincus SH, Eng L, Cooke CL, Maddaloni M (2002) Identification of hypoglycemia in mice as a surrogate marker of ricin toxicosis. Comp Med 52:530–533

    PubMed  CAS  Google Scholar 

  • Pratt TS, Pincus SH, Hale ML, Moreira AL, Roy CJ, Tchou-Wong KM (2007) Oropharyngeal aspiration of ricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin A-chain for post-exposure treatment. Exp Lung Res 33:459–481

    Article  PubMed  CAS  Google Scholar 

  • Roche JK, Stone MK, Gross LK, Lindner M, Seaner R, Pincus SH, Obrig TG (2008) Post-exposure targeting of specific epitopes on ricin toxin abrogates toxin-induced hypoglycemia, hepatic injury, and lethality in a mouse model. Lab Invest 88:1178–1191

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897

    Article  PubMed  CAS  Google Scholar 

  • Sausville EA and Vitetta ES (1997) Clinical studies with deglycosylated ricin A-chain immunotoxins in ‘Monoclonal antibody-based therapy of cancer’. In: Grossbard ML (ed), Marcel Dekker Inc, Boston, vol 4 p 81–89

    Google Scholar 

  • Schier JG, Patel MM, Belson MG, Patel A, Schwartz M, Fitzpatrick N, Drociuk D, Deitchman S, Meyer R, Litovitz T, Watson WA, Rubin CH, Kiefer M (2007) Public health investigation after the discovery of ricin in a South Carolina postal facility. Am J Public Health 97:S152–S157

    Article  PubMed  Google Scholar 

  • Smallshaw JE, Vitetta ES (2010) A lyophilized formulation of RiVax, a recombinant ricin subunit vaccine, retains immunogenicity. Vaccine 28:2428–2435

    Article  PubMed  CAS  Google Scholar 

  • Smallshaw JE, Firan A, Fulmer JR, Ruback SL, Ghetie V, Vitetta ES (2002) A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine 20:3422–3427

    Article  PubMed  CAS  Google Scholar 

  • Smallshaw JE, Ghetie V, Rizo J, Fulmer JR, Trahan LL, Ghetie MA, Vitetta ES (2003) Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nature Biotech 21:387–391

    Article  CAS  Google Scholar 

  • Smallshaw JE, Richardson JA, Pincus S, Schindler J, Vitetta ES (2005) Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine 23:4775–4784

    Article  PubMed  CAS  Google Scholar 

  • Smallshaw JE, Richardson JA, Vitetta ES (2007) RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine 25:7459–7469

    Article  PubMed  CAS  Google Scholar 

  • Soler-Rodriguez AM, Uhr JW, Richardson Vitetta ES (1992) The toxicity of chemically deglycosylated ricin A-chain in mice. Int J Immunopharmacol 14:281–291

    Article  PubMed  CAS  Google Scholar 

  • Soler-Rodríguez AM, Ghetie MA, Oppenheimer-Marks N, Uhr JW, Vitetta ES (1993) Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome. Exp Cell Res 206:227–234

    Article  PubMed  Google Scholar 

  • Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM (2006) Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3:26–35

    Article  PubMed  Google Scholar 

  • Vitetta ES, Smallshaw JE, Coleman E, Jafri H, Foster C, Munford R, Schindler J (2006) A pilot clinical trial of a recombinant ricin vaccine in normal humans. Proc Natl Acad Sci U S A 103:2268–2273

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Korcheva V, Jacoby DB, Magun B (2007) Intrapulmonary delivery of ricin at high dosage triggers a systemic inflammatory response and glomerular damage. Am J Pathol 170:1497–1510

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Rill WL, Malli R, Hewetson J, Naseem H, Tammariello R, Kende M (1996) Intranasal stimulation of long-lasting immunity against aerosol ricin challenge with ricin toxoid vaccine encapsulated in polymeric microspheres. Vaccine 14:1031–1038

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen S. Vitetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smallshaw, J.E., Vitetta, E.S. (2011). Ricin Vaccine Development. In: Mantis, N. (eds) Ricin and Shiga Toxins. Current Topics in Microbiology and Immunology, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_156

Download citation

Publish with us

Policies and ethics