Skip to main content

How Ricin and Shiga Toxin Reach the Cytosol of Target Cells: Retrotranslocation from the Endoplasmic Reticulum

  • Chapter
  • First Online:
Ricin and Shiga Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 357))

Abstract

A number of protein toxins bind at the surface of mammalian cells and after endocytosis traffic to the endoplasmic reticulum, where the toxic A chains are liberated from the holotoxin. The free A chains are then dislocated, or retrotranslocated, across the ER membrane into the cytosol. Here, in contrast to ER substrates destined for proteasomal destruction, they undergo folding to a catalytic conformation and subsequently inactivate their cytosolic targets. These toxins therefore provide toxic probes for testing the molecular requirements for retrograde trafficking, the ER processes that prepare the toxic A chains for transmembrane transport, the dislocation step itself and for the post-dislocation folding that results in catalytic activity. We describe here the dislocation of ricin A chain and Shiga toxin A chain, but also consider cholera toxin which bears a superficial structural resemblance to Shiga toxin. Recent studies not only describe how these proteins breach the ER membrane, but also reveal aspects of a fundamental cell biological process, that of ER-cytosol dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTx:

Cholera toxin

CTxA1:

CTx A1 toxic chain

CTxB:

CTx B chain

ER:

Endoplasmic reticulum

ERAD:

ER associated protein degradation

Gb3:

Glycolipid globotriaosylceramide, the STx receptor.

PDI:

Protein disulphide isomerise

RTA:

Ricin A chain

RTB:

Ricin B chain

STx:

Shiga toxin

STxA1:

STx A1 toxic chain

STxB:

STx B chain

References

  • Abujarour RJ, Dalal S, Hanson PI, Draper RK (2005) p97 is in a complex with cholera toxin and influences the transport of cholera toxin and related toxins to the cytoplasm. J Biol Chem 280:15865–15871

    Article  PubMed  CAS  Google Scholar 

  • Afshar N, Black BE, Paschal BM (2005) Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol Cell Biol 25:8844–8853

    Article  PubMed  CAS  Google Scholar 

  • Allen SC, Moore KA, Marsden CJ, Fülop V, Moffat KG, Lord JM, Ladds G, Roberts LM (2007) The isolation and characterization of temperature-dependent ricin A chain molecules in Saccharomyces cerevisiae. Febs J 274:5586–5599

    Article  PubMed  CAS  Google Scholar 

  • Ampapathi RS, Creath AL, Lou DI, Craft JW Jr, Blanke SR, Legge GB (2008) Order–disorder–order transitions mediate the activation of cholera toxin. J Mol Biol 377:748–760

    Article  PubMed  CAS  Google Scholar 

  • Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE (2000) Ribosome-mediated folding of partially unfolded ricin A chain. J Biol Chem 275:9263–9269

    Article  PubMed  CAS  Google Scholar 

  • Banerjee T, Pande A, Jobling MG, Taylor M, Massey S, Holmes RK, Tatulian SA, Teter K (2010) Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochemistry 49:8839–8846

    Article  PubMed  CAS  Google Scholar 

  • Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY (2001) HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 12:4114–4128

    PubMed  CAS  Google Scholar 

  • Bazirgan OA, Hampton RY (2008) Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J Biol Chem 283:12797–12810

    Article  PubMed  CAS  Google Scholar 

  • Bellisola G, Fracasso G, Ippoliti R, Menestrina G, Rosen A, Solda S, Udali S, Tomazzolli R, Tridente G, Colombatti M (2004) Reductive activation of ricin and ricin A chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 67:1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Bernardi KM, Forster ML, Lencer WI, Tsai B (2008) Derlin-1 facilitates the retro-translocation of cholera toxin. Mol Biol Cell 19:877–884

    Article  PubMed  CAS  Google Scholar 

  • Bernardi KM, Williams JM, Kikkert M, van Voorden S, Wiertz EJ, Ye Y, Tsai B (2010) The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation. Mol Biol Cell 21:140–151

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Boal F, Guetzoyan L, Sessions RB, Zeghouf M, Spooner RA, Lord JM, Cherfils J, Clarkson GJ, Roberts LM, Stephens DJ (2010) LG186: an inhibitor of GBF1 function that causes Golgi disassembly in human and canine cells. Traffic 11:1537–1551

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579

    Article  PubMed  CAS  Google Scholar 

  • Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10:507–513

    Article  PubMed  CAS  Google Scholar 

  • Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  PubMed  CAS  Google Scholar 

  • Carroll SM, Hampton RY (2010) Usa1p is required for optimal function and regulation of the Hrd1p endoplasmic reticulum-associated degradation ubiquitin ligase. J Biol Chem 285:5146–5156

    Article  PubMed  CAS  Google Scholar 

  • Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373

    Article  PubMed  CAS  Google Scholar 

  • Crispin M, Chang VT, Harvey DJ, Dwek RA, Evans EJ, Stuart DI, Jones EY, Lord JM, Spooner RA, Davis SJ (2009) A human embryonic kidney 293T cell line mutated at the Golgi alpha-mannosidase II locus. J Biol Chem 284:21684–21695

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Pinheiro TJ, Roberts LM, Lord JM (2002) Binding of ricin A chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  PubMed  CAS  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  PubMed  CAS  Google Scholar 

  • Dixit G, Mikoryak C, Hayslett T, Bhat A, Draper RK (2008) Cholera toxin up-regulates endoplasmic reticulum proteins that correlate with sensitivity to the toxin. Exp Biol Med (Maywood) 233:163–175

    Article  CAS  Google Scholar 

  • Elkabetz Y, Shapira I, Rabinovich E, Bar-Nun S (2004) Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J Biol Chem 279:3980–3989

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Emmanuel F, Turpin E, Alfsen A, Frenoy JP (1988) Separation of ricin A and B chains after dithiothreitol reduction. Anal Biochem 173:134–141

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262:8128–8130

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T, Igarashi K (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 171:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12:11–18; sup pp 1–12

    Google Scholar 

  • Falguieres T, Johannes L (2006) Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol Cell 98:125–134

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Jadhav AP, Rodighiero C, Fujinaga Y, Kirchhausen T, Lencer WI (2004) Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep 5:596–601

    Article  PubMed  CAS  Google Scholar 

  • Ferrari DM, Söling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Forster ML, Sivick K, Park YN, Arvan P, Lencer WI, Tsai B (2006) Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation. J Cell Biol 173:853–859

    Article  PubMed  CAS  Google Scholar 

  • Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O’Brien AD, James MN (2004) Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J Biol Chem 279:27511–27517

    Article  PubMed  CAS  Google Scholar 

  • Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seelig L, Kim C, Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 151:69–82

    Article  PubMed  CAS  Google Scholar 

  • Garred O, van Deurs B, Sandvig K (1995) Furin-induced cleavage and activation of Shiga toxin. J Biol Chem 270:10817–10821

    Article  PubMed  CAS  Google Scholar 

  • Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854

    Article  PubMed  CAS  Google Scholar 

  • Giodini A, Cresswell P (2008) Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO J 27:201–211

    Article  PubMed  CAS  Google Scholar 

  • Girard M, Poupon V, Blondeau F, McPherson PS (2005) The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 280:40135–40143

    Article  PubMed  CAS  Google Scholar 

  • Guetzoyan LJ, Spooner RA, Boal F, Stephens DJ, Lord JM, Roberts LM, Clarkson GJ (2010) Fine tuning Exo2, a small molecule inhibitor of secretion and retrograde trafficking pathways in mammalian cells. Mol Biosyst 6:2030–2038

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci U S A 79:5935–5938

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Beevers H (1986) Lectins in castor bean seedlings. Plant Physiol 80:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  PubMed  CAS  Google Scholar 

  • Heiligenstein S, Eisfeld K, Sendzik T, Jimenez-Becker N, Breinig F, Schmitt MJ (2006) Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25:4717–4727

    Article  PubMed  CAS  Google Scholar 

  • Heyningen SV (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183:656–657

    Article  Google Scholar 

  • Jacewicz M, Feldman HA, Donohue-Rolfe A, Balasubramanian KA, Keusch GT (1989) Pathogenesis of Shigella diarrhea XIV. Analysis of Shiga toxin receptors on cloned HeLa cells. J Infect Dis 159:881–889

    Article  PubMed  CAS  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Decaudin D (2005) Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 12:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Kanehara K, Kawaguchi S, Ng DT (2007) The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev Biol 18:743–750

    Article  PubMed  CAS  Google Scholar 

  • Kanehara K, Xie W, Ng DT (2010) Modularity of the Hrd1 ERAD complex underlies its diverse client range. J Cell Biol 188:707–716

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42

    Article  PubMed  CAS  Google Scholar 

  • Kothe M, Ye Y, Wagner JS, De Luca HE, Kern E, Rapoport TA, Lencer WI (2005) Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate. J Biol Chem 280:28127–28132

    Article  PubMed  CAS  Google Scholar 

  • LaPointe P, Wei X, Gariepy J (2005) A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen. J Biol Chem 280:23310–23318

    Article  PubMed  CAS  Google Scholar 

  • Li S, Spooner RA, Allen SC, Guise CP, Ladds G, Schnoder T, Schmitt MJ, Lord JM, Roberts LM (2010) Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol Biol Cell 21:2543–2554

    Article  PubMed  CAS  Google Scholar 

  • Lipson C, Alalouf G, Bajorek M, Rabinovich E, Atir-Lande A, Glickman M, Bar-Nun S (2008) A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J Biol Chem 283:7166–7175

    Article  PubMed  CAS  Google Scholar 

  • Majoul I, Ferrari D, Söling HD (1997) Reduction of protein disulfide bonds in an oxidizing environment. The disulfide bridge of cholera toxin A-subunit is reduced in the endoplasmic reticulum. FEBS Lett 401:104–108

    Article  PubMed  CAS  Google Scholar 

  • Majoul IV, Bastiaens PI, Soling HD (1996) Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol 133:777–789

    Article  PubMed  CAS  Google Scholar 

  • Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM, Frigerio L, Roberts LM (2008) The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J Biol Chem 283:15869–15877

    Article  PubMed  CAS  Google Scholar 

  • Massey S, Banerjee T, Pande AH, Taylor M, Tatulian SA, Teter K (2009) Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J Mol Biol 393:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer PU, Cook JP, Wahlman J, Pinheiro TT, Moore KA, Lord JM, Johnson AE, Roberts LM (2009) Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J Biol Chem 284:10232–10242

    Article  PubMed  CAS  Google Scholar 

  • McConnell E, Lass A, Wojcik C (2007) Ufd1-Npl4 is a negative regulator of cholera toxin retrotranslocation. Biochem Biophys Res Commun 355:1087–1090

    Article  PubMed  CAS  Google Scholar 

  • McKenzie J, Johannes L, Taguchi T, Sheff D (2009) Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. Febs J 276:1581–1595

    Article  PubMed  CAS  Google Scholar 

  • Menikh A, Saleh MT, Gariepy J, Boggs JM (1997) Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study. Biochemistry 36:15865–15872

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–541

    Article  PubMed  CAS  Google Scholar 

  • O’Neal CJ, Amaya EI, Jobling MG, Holmes RK, Hol WG (2004) Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 43:3772–3782

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Saltvedt E, Pihl A (1974) Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem 249:803–810

    PubMed  CAS  Google Scholar 

  • Orlandi PA (1997) Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J Biol Chem 272:4591–4599

    PubMed  CAS  Google Scholar 

  • Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K (2007) Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 374:1114–1128

    Article  PubMed  CAS  Google Scholar 

  • Pawar V, De A, Briggs L, Omar MM, Sweeney ST, Lord JM, Roberts LM, Spooner RA, Moffat KG (2011) RNAi screening of Drosophila (Sophophora) melanogaster S2 cells for Ricin sensitivity and resistance. J Biomol Screen 16:436–442

    Article  PubMed  CAS  Google Scholar 

  • Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C, Grant BD, Raposo G, Johannes L (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10:1868–1880

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    Article  PubMed  CAS  Google Scholar 

  • Rapak A, Falnes PO, Olsnes S (1997) Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc Natl Acad Sci U S A 94:3783–3788

    Article  PubMed  CAS  Google Scholar 

  • Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    Article  PubMed  CAS  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  CAS  Google Scholar 

  • Rutenber E, Katzin BJ, Ernst S, Collins EJ, Mlsna D, Ready MP, Robertus JD (1991) Crystallographic refinement of ricin to 2.5 A. Proteins 10:240–250

    Article  PubMed  CAS  Google Scholar 

  • Saleh MT, Ferguson J, Boggs JM, Gariepy J (1996) Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Biochemistry 35:9325–9334

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Ryd M, Garred O, Schweda E, Holm PK, van Deurs B (1994) Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J Cell Biol 126:53–64

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12:865–872

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJ, Wagner JS, De Luca HE, Kam W, Paw BH, Lencer WI (2010) Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. J Clin Invest

    Google Scholar 

  • Sharp GW, Hynie S (1971) Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229:266–269

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Dascher C, Roberts LM, Lord JM, Balch WE (1995a) Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex. J Biol Chem 270:20078–20083

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Lord JM, Roberts LM (1995b) Point mutations in the hydrophobic C-terminal region of ricin A chain indicate that Pro250 plays a key role in membrane translocation. Eur J Biochem 232:458–463

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Lord JM (1995c) Catalytic and cytotoxic activities of recombinant ricin A chain mutants with charged residues added at the carboxyl terminus. Protein Expr Purif 6:665–670

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Romisch K, Davey J, Wolf DH, Lord JM (1999) Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 459:80–84

    Article  PubMed  CAS  Google Scholar 

  • Slominska-Wojewodzka M, Gregers TF, Walchli S, Sandvig K (2006) EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 17:1664–1675

    Article  PubMed  CAS  Google Scholar 

  • Spear ED, Ng DT (2005) Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J Cell Biol 169:73–82

    Article  PubMed  CAS  Google Scholar 

  • Spilsberg B, Van Meer G, Sandvig K (2003) Role of lipids in the retrograde pathway of ricin intoxication. Traffic 4:544–552

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Hart PJ, Cook JP, Pietroni P, Rogon C, Hohfeld J, Roberts LM, Lord JM (2008a) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:17408–17413

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM (2006) Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3:26

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson P (2010) Drug targeting: learning from toxin entry and trafficking in mammalian cells. Curr Opin Drug Discov Devel 13:86–95

    PubMed  CAS  Google Scholar 

  • Spooner RA, Watson P, Smith DC, Boal F, Amessou M, Johannes L, Clarkson GJ, Lord JM, Stephens DJ, Roberts LM (2008b) The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem J 414:471–484

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  PubMed  CAS  Google Scholar 

  • Surjit M, Jameel S, Lal SK (2007) Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. J Virol 81:3339–3345

    Article  PubMed  CAS  Google Scholar 

  • Tam PJ, Lingwood CA (2007) Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology 153:2700–2710

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Navarro-Garcia F, Huerta J, Burress H, Massey S, Ireton K, Teter K (2010) Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 285:31261–31267

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  • Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    Article  PubMed  CAS  Google Scholar 

  • Valeva A, Walev I, Weis S, Boukhallouk F, Wassenaar TM, Endres K, Fahrenholz F, Bhakdi S, Zitzer A (2004) A cellular metalloproteinase activates Vibrio cholerae pro-cytolysin. J Biol Chem 279:25143–25148

    Article  PubMed  CAS  Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  PubMed  CAS  Google Scholar 

  • Wales R, Chaddock JA, Roberts LM, Lord JM (1992) Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp Cell Res 203:1–4

    Article  PubMed  CAS  Google Scholar 

  • Wernick NL, De Luca H, Kam WR, Lencer WI (2010) N-terminal extension of the cholera toxin A1-chain causes rapid degradation after retrotranslocation from endoplasmic reticulum to cytosol. J Biol Chem 285:6145–6152

    Article  PubMed  CAS  Google Scholar 

  • Wesche J, Rapak A, Olsnes S (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 274:34443–34449

    Article  PubMed  CAS  Google Scholar 

  • Windschiegl B, Orth A, Römer W, Berland L, Stechmann B, Bassereau P, Johannes L, Steinem C (2009) Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One 4:e6238

    Article  PubMed  CAS  Google Scholar 

  • Winkeler A, Godderz D, Herzog V, Schmitz A (2003) BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett 554:439–442

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Kanehara K, Sayeed A, Ng DT (2009) Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol Biol Cell 20:3317–3329

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Haslam DB (2005) Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect Immun 73:2524–2532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wellcome Trust Programme Grant 080566/Z/06/Z and National Institutes of Health Grant 5U01AI65869-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Lord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spooner, R.A., Lord, J.M. (2011). How Ricin and Shiga Toxin Reach the Cytosol of Target Cells: Retrotranslocation from the Endoplasmic Reticulum. In: Mantis, N. (eds) Ricin and Shiga Toxins. Current Topics in Microbiology and Immunology, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_154

Download citation

Publish with us

Policies and ethics