Skip to main content

ADAR Proteins: Structure and Catalytic Mechanism

  • Chapter
  • First Online:
Book cover Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089–1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647–2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal RP, Sagar SM, Parks RE (1975) Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol 24:693–701

    PubMed  CAS  Google Scholar 

  • Albert A, Katritzky AR, Boulton AJ (1976) Covalent hydration in nitrogen heterocycles. In: Advances in heterocyclic chemistry, vol 20. Academic Press, NewYork, pp 117–143

    Google Scholar 

  • Ashley GW, Bartlett PA (1984) Purification and properties of cytidine deaminase from Escherichia coli. J Biol Chem 259:13615–13620

    PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    PubMed  CAS  Google Scholar 

  • Betts L, Xiang S, Short SA, Wolfenden R, Carter CW (1994) Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex. J Mol Biol 235:635–656

    PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    PubMed  CAS  Google Scholar 

  • Carlow DC, Carter CW, Mejlhede N, Neuhard J, Wolfenden R (1999) Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure. Biochemistry 38:12258–12265

    PubMed  CAS  Google Scholar 

  • Carter CW (1995) The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie 77:92–98

    PubMed  CAS  Google Scholar 

  • Chassy BM, Suhadolnik RJ (1967) Adenosine aminohydrolase. Binding and hydrolysis of 2- and 6-substituted purine ribonucleosides and 9-substituted adenine nucleosides. J Biol Chem 242:3655–3658

    PubMed  CAS  Google Scholar 

  • Chilibeck KA, Wu T, Liang C, Schellenberg MJ, Gesner EM, Lynch JM, MacMillan AM (2006) FRET analysis of in vivo dimerization by RNA-editing enzymes. J Biol Chem 281:16530–16535

    PubMed  CAS  Google Scholar 

  • Chung SJ, Fromme JC, Verdine GL (2005) Structure of human cytidine deaminase bound to a potent inhibitor. J Med Chem 48:658–660

    PubMed  CAS  Google Scholar 

  • Cohen RM, Wolfenden R (1971) Cytidine deaminase from Escherichia coli. Purification, properties and inhibition by the potential transition state analog 3, 4, 5, 6-tetrahydrouridine. J Biol Chem 246:7561–7565

    PubMed  CAS  Google Scholar 

  • Dawson TR, Sansam CL, Emeson RB (2004) Structure and sequence determinants required for the RNA editing of ADAR2 substrates. J Biol Chem 279:4941–4951

    PubMed  CAS  Google Scholar 

  • Doyle M, Jantsch MF (2002) New and old roles of the double-stranded RNA-binding domain. J Struct Biol 140:147–153

    PubMed  CAS  Google Scholar 

  • Easterwood L, Véliz E, Beal P (2000) Demethylation of 6-O-methylinosine by an RNA-editing adenosine deaminase. J Am Chem Soc 122:11537–11538

    CAS  Google Scholar 

  • Egerer M, Satchell KJF (2010) Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog 6:1–8

    PubMed  Google Scholar 

  • Elias Y, Huang RH (2005) Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA. Biochemistry 44:12057–12065

    PubMed  CAS  Google Scholar 

  • Erion M, Reddy M (1998) Calculation of relative hydration free energy differences for heteroaromatic compounds: use in the design of adenosine deaminase and cytidine deaminase inhibitors. J Am Chem Soc 120:3295–3304

    CAS  Google Scholar 

  • Frederiksen S (1966) Specificity of adenosine deaminase toward adenosine and 2′-deoxyadenosine analogues. Arch Biochem Biophys 113:383–388

    PubMed  CAS  Google Scholar 

  • Frick L, MacNeela JP, Wolfenden R (1987) Transition state stabilization by deaminases: rates of nonenzymatic hydrolysis of adenosine and cytidine. Bioorg Chem 15:100–108

    CAS  Google Scholar 

  • Gallo A, Keegan LP, Ring GM, O’Connell MA (2003) An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J 22:3421–3430

    PubMed  CAS  Google Scholar 

  • Gerber AP, Keller W (1999) An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286:1146–1149

    PubMed  CAS  Google Scholar 

  • Gerber AP, Keller W (2001) RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 26:376–384

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044

    PubMed  CAS  Google Scholar 

  • Hart K, Nyström B, Ohman M, Nilsson L (2005) Molecular dynamics simulations and free energy calculations of base flipping in dsRNA. RNA 11:609–618

    PubMed  CAS  Google Scholar 

  • Haudenschild BL, Maydanovych O, Véliz EA, Macbeth MR, Bass BL, Beal PA (2004) A transition state analogue for an RNA-editing reaction. J Am Chem Soc 126:11213–11219

    PubMed  CAS  Google Scholar 

  • Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A (1997) A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94:8421–8426

    PubMed  CAS  Google Scholar 

  • Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS (2008) Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456:121–124

    PubMed  CAS  Google Scholar 

  • Hough RF, Bass BL (1994) Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem 269:9933–9939

    PubMed  CAS  Google Scholar 

  • Hunt SW, Hoffee PA (1982) Adenosine deaminase from deoxycoformycin-sensitive and-resistant rat hepatoma cells. Purification and characterization. J Biol Chem 257:14239–14244

    PubMed  CAS  Google Scholar 

  • Ireton GC, Black ME, Stoddard BL (2003) The 1.14 A crystal structure of yeast cytosine deaminase: evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. Structure 11:961–972

    PubMed  CAS  Google Scholar 

  • Jayalath P, Pokharel S, Véliz E, Beal PA (2009) Synthesis and evaluation of an RNA editing substrate bearing 2′-deoxy-2′-mercaptoadenosine. Nucleosides Nucleotides Nucleic Acids 28:78–88

    PubMed  CAS  Google Scholar 

  • Johansson E, Mejlhede N, Neuhard J, Larsen S (2002) Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 A resolution. Biochemistry 41:2563–2570

    PubMed  CAS  Google Scholar 

  • Johansson E, Neuhard J, Willemoës M, Larsen S (2004) Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase. Biochemistry 43:6020–6029

    PubMed  CAS  Google Scholar 

  • Källman AM, Sahlin M, Ohman M (2003) ADAR2 A ⇢I editing: site selectivity and editing efficiency are separate events. Nucleic Acids Res 31:4874–4881

    PubMed  Google Scholar 

  • Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci U S A 91:11457–11461

    PubMed  CAS  Google Scholar 

  • Kim J, Malashkevich V, Roday S, Lisbin M, Schramm VL, Almo SC (2006) Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry 45:6407–6416

    PubMed  CAS  Google Scholar 

  • Koeris M, Funke L, Shrestha J, Rich A, Maas S (2005) Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res 33:5362–5370

    PubMed  CAS  Google Scholar 

  • Kuratani M, Ishii R, Bessho Y, Fukunaga R, Sengoku T, Shirouzu M, Sekine S-I, Yokoyama S (2005) Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. J Biol Chem 280:16002–16008

    PubMed  CAS  Google Scholar 

  • Lai F, Drakas R, Nishikura K (1995) Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J Biol Chem 270:17098–17105

    PubMed  CAS  Google Scholar 

  • Lee Y-M, Lim C (2008) Physical basis of structural and catalytic Zn-binding sites in proteins. J Mol Biol 379:545–553

    PubMed  CAS  Google Scholar 

  • Lee W-H, Kim YK, Nam KH, Priyadarshi A, Lee EH, Kim EE, Jeon YH, Cheong C, Hwang KY (2007) Crystal structure of the tRNA-specific adenosine deaminase from Streptococcus pyogenes. Proteins 68:1016–1019

    PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (1999) The importance of internal loops within RNA substrates of ADAR1. J Mol Biol 291:1–13

    PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (2000) Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39:12875–12884

    PubMed  CAS  Google Scholar 

  • Li JB, Levanon EY, Yoon J-K, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213

    PubMed  CAS  Google Scholar 

  • Liljas A, Kannan KK, Bergstén PC, Waara I, Fridborg K, Strandberg B, Carlbom U, Järup L, Lövgren S, Petef M (1972) Crystal structure of human carbonic anhydrase C. Nature New Biol 235:131–137

    PubMed  CAS  Google Scholar 

  • Liu Y, George CX, Patterson JB, Samuel CE (1997) Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem 272:4419–4428

    PubMed  CAS  Google Scholar 

  • Liu Y, Lei M, Samuel CE (2000) Chimeric double-stranded RNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of double-stranded RNA-binding domains from ADAR1 and protein kinase PKR. Proc Natl Acad Sci USA 97:12541–12546

    PubMed  CAS  Google Scholar 

  • Losey HC, Ruthenburg AJ, Verdine GL (2006) Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat Struct Mol Biol 13:153–159

    PubMed  CAS  Google Scholar 

  • Luo M, Schramm VL (2008) Transition state structure of E. coli tRNA-specific adenosine deaminase. J Am Chem Soc 130:2649–2655

    PubMed  CAS  Google Scholar 

  • Luo M, Singh V, Taylor EA, Schramm VL (2007) Transition-state variation in human, bovine, and Plasmodium falciparum adenosine deaminases. J Am Chem Soc 129:8008–8017

    PubMed  CAS  Google Scholar 

  • Lupardus PJ, Shen A, Bogyo M, Garcia KC (2008) Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322:265–268

    PubMed  CAS  Google Scholar 

  • Macbeth MR, Bass BL (2007) Large-scale overexpression and purification of ADARs from Saccharomyces cerevisiae for biophysical and biochemical studies. Methods Enzymol 424:319–331

    PubMed  CAS  Google Scholar 

  • Macbeth MR, Lingam AT, Bass BL (2004) Evidence for auto-inhibition by the N terminus of hADAR2 and activation by dsRNA binding. RNA 10:1563–1571

    PubMed  CAS  Google Scholar 

  • Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539

    PubMed  CAS  Google Scholar 

  • Marquez VE, Schroeder GK, Ludek OR, Siddiqui MA, Ezzitouni A, Wolfenden R (2009) Contrasting behavior of conformationally locked carbocyclic nucleosides of adenosine and cytidine as substrates for deaminases. Nucleosides Nucleotides Nucleic Acids 28:614–632

    PubMed  CAS  Google Scholar 

  • Maydanovych O, Beal PA (2006) C6-substituted analogues of 8-azanebularine: probes of an RNA-editing enzyme active site. Org Lett 8:3753–3756

    PubMed  CAS  Google Scholar 

  • Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379:460–464

    PubMed  CAS  Google Scholar 

  • Mohamedali KA, Kurz LC, Rudolph FB (1996) Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase. Biochemistry 35:1672–1680

    PubMed  CAS  Google Scholar 

  • Navaratnam N, Sarwar R (2006) An overview of cytidine deaminases. Int J Hematol 83:195–200

    PubMed  CAS  Google Scholar 

  • Nishikura K, Yoo C, Kim U, Murray JM, Estes PA, Cash FE, Liebhaber SA (1991) Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J 10:3523–3532

    PubMed  CAS  Google Scholar 

  • Ohman M, Källman AM, Bass BL (2000) In vitro analysis of the binding of ADAR2 to the pre-mRNA encoding the GluR-B R/G site. RNA 6:687–697

    PubMed  CAS  Google Scholar 

  • Pietra F (1969) Mechanisms for nucleophilic and photonucleophilic aromatic substitution reactions. Q Rev, Chem Soc 23(4):504–521

    CAS  Google Scholar 

  • Pokharel S, Beal PA (2006) High-throughput screening for functional adenosine to inosine RNA editing systems. ACS Chem Biol 1:761–765

    PubMed  CAS  Google Scholar 

  • Pokharel S, Jayalath P, Maydanovych O, Goodman RA, Wang SC, Tantillo DJ, Beal PA (2009) Matching active site and substrate structures for an RNA editing reaction. J Am Chem Soc 131:11882–11891

    PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13:5701–5711

    PubMed  CAS  Google Scholar 

  • Polson AG, Crain PF, Pomerantz SC, McCloskey JA, Bass BL (1991) The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry 30:11507–11514

    PubMed  CAS  Google Scholar 

  • Poulsen H, Jorgensen R, Heding A, Nielsen FC, Bonven B, Egebjerg J (2006) Dimerization of ADAR2 is mediated by the double-stranded RNA binding domain. RNA 12:1350–1360

    PubMed  CAS  Google Scholar 

  • Prochazkova K, Satchell KJF (2008) Structure–function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem 283:23656–23664

    PubMed  CAS  Google Scholar 

  • Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS (2007) The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445:447–451

    PubMed  CAS  Google Scholar 

  • Pruitt RN, Chagot B, Cover M, Chazin WJ, Spiller B, Lacy DB (2009) Structure–function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J Biol Chem 284:21934–21940

    PubMed  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer, Dordrecht, pp 441–477

    Google Scholar 

  • Reineke J, Tenzer S, Rupnik M, Koschinski A, Hasselmayer O, Schrattenholz A, Schild H, von Eichel-Streiber C (2007) Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446:415–419

    PubMed  CAS  Google Scholar 

  • Saccomanno L, Bass BL (1994) The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol 14:5425–5432

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    PubMed  CAS  Google Scholar 

  • Schirle NT, Goodman RA, Krishnamurthy M, Beal PA (2010) Selective inhibition of ADAR2-catalyzed editing of the serotonin 2c receptor pre-mRNA by a helix-threading peptide. Org Biomol Chem 8(21):4898–4904

    PubMed  CAS  Google Scholar 

  • Schramm VL, Baker DC (1985) Spontaneous epimerization of (S)-deoxycoformycin and interaction of (R)-deoxycoformycin (S)-deoxycoformycin, and 8-ketodeoxycoformycin with adenosine deaminase. Biochemistry 24:641–646

    PubMed  CAS  Google Scholar 

  • Seeds AM, Sandquist JC, Spana EP, York JD (2004) A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J Biol Chem 279:47222–47232

    PubMed  CAS  Google Scholar 

  • Seela F, Xu K (2007) Pyrazolo[3, 4-d]pyrimidine ribonucleosides related to 2-aminoadenosine and isoguanosine: synthesis, deamination and tautomerism. Org Biomol Chem 5:3034–3045

    PubMed  CAS  Google Scholar 

  • Sharff AJ, Wilson DK, Chang Z, Quiocho FA (1992) Refined 2.5 A structure of murine adenosine deaminase at pH 6.0. J Mol Biol 226:917–921

    PubMed  CAS  Google Scholar 

  • Sideraki V, Mohamedali KA, Wilson DK, Chang Z, Kellems RE, Quiocho FA, Rudolph FB (1996) Probing the functional role of two conserved active site aspartates in mouse adenosine deaminase. Biochemistry 35:7862–7872

    PubMed  CAS  Google Scholar 

  • Snider MJ, Reinhardt L, Wolfenden R, Cleland WW (2002) 15 N kinetic isotope effects on uncatalyzed and enzymatic deamination of cytidine. Biochemistry 41:415–421

    PubMed  CAS  Google Scholar 

  • Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB, Allain FH-T (2010) The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143:225–237

    PubMed  CAS  Google Scholar 

  • Stephens OM, Yi-Brunozzi HY, Beal PA (2000) Analysis of the RNA-editing reaction of ADAR2 with structural and fluorescent analogues of the GluR-B R/G editing site. Biochemistry 39:12243–12251

    PubMed  CAS  Google Scholar 

  • Stephens OM, Haudenschild BL, Beal PA (2004) The binding selectivity of ADAR2’s dsRBMs contributes to RNA-editing selectivity. Chem Biol 11:1239–1250

    PubMed  CAS  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    PubMed  CAS  Google Scholar 

  • Teh A-H, Kimura M, Yamamoto M, Tanaka N, Yamaguchi I, Kumasaka T (2006) The 1.48 A resolution crystal structure of the homotetrameric cytidine deaminase from mouse. Biochemistry 45:7825–7833

    PubMed  CAS  Google Scholar 

  • Tyler PC, Taylor EA, Fröhlich RFG, Schramm VL (2007) Synthesis of 5′-methylthio coformycins: specific inhibitors for malarial adenosine deaminase. J Am Chem Soc 129:6872–6879

    PubMed  CAS  Google Scholar 

  • Valente L, Nishikura K (2007) RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J Biol Chem 282:16054–16061

    PubMed  CAS  Google Scholar 

  • Véliz EA, Easterwood LM, Beal PA (2003) Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. J Am Chem Soc 125:10867–10876

    PubMed  Google Scholar 

  • Verbsky JW, Chang S-C, Wilson MP, Mochizuki Y, Majerus PW (2005) The pathway for the production of inositol hexakisphosphate in human cells. J Biol Chem 280:1911–1920

    PubMed  CAS  Google Scholar 

  • Wagner RW, Smith JE, Cooperman BS, Nishikura K (1989) A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci U S A 86:2647–2651

    PubMed  CAS  Google Scholar 

  • Ward DC, Reich E, Stryer L (1969) Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2, 6-diaminopurine riboside, and their derivatives. J Biol Chem 244:1228–1237

    PubMed  CAS  Google Scholar 

  • Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8:668–676

    PubMed  CAS  Google Scholar 

  • West R, Powell D, Wheatley LS, Lee MKT, Schleyer PvR (1962) The relative strengths of alkyl halides as proton acceptor groups in hydrogen bonding. J Am Chem Soc 84(16):3221–3222

    CAS  Google Scholar 

  • Wilson DK, Rudolph FB, Quiocho FA (1991) Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252:1278–1284

    PubMed  CAS  Google Scholar 

  • Wolf J, Gerber AP, Keller W (2002) tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J 21:3841–3851

    PubMed  CAS  Google Scholar 

  • Wolfenden R, Kati W (1991) Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors. Acc Chem Res 24:209–215

    CAS  Google Scholar 

  • Wong SK, Sato S, Lazinski DW (2001) Substrate recognition by ADAR1 and ADAR2. RNA 7:846–858

    PubMed  CAS  Google Scholar 

  • Xie W, Liu X, Huang RH (2003) Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat Struct Biol 10:781–788

    PubMed  CAS  Google Scholar 

  • Xu M, Wells KS, Emeson RB (2006) Substrate-dependent contribution of double-stranded RNA-binding motifs to ADAR2 function. Mol Biol Cell 17:3211–3220

    PubMed  CAS  Google Scholar 

  • Yang JH, Sklar P, Axel R, Maniatis T (1997) Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing. Proc Natl Acad Sci U S A 94:4354–4359

    PubMed  CAS  Google Scholar 

  • Yeo J, Goodman RA, Schirle NT, David SS, Beal PA (2010) RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A 107:20715–20719

    PubMed  CAS  Google Scholar 

  • Yi-Brunozzi HY, Easterwood LM, Kamilar GM, Beal PA (1999) Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. Nucleic Acids Res 27:2912–2917

    PubMed  CAS  Google Scholar 

  • Yi-Brunozzi HY, Stephens OM, Beal PA (2001) Conformational changes that occur during an RNA-editing adenosine deamination reaction. J Biol Chem 276:37827–37833

    PubMed  CAS  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    PubMed  CAS  Google Scholar 

  • Zhou P, Tian F, Lv F, Shang Z (2009) Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 76:151–163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

P.A.B would like to acknowledge support from the National Institutes of Health in the form of grant R01GM061115. R.A.G is supported by a Graduate Research Fellowship from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark R. Macbeth or Peter A. Beal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodman, R.A., Macbeth, M.R., Beal, P.A. (2011). ADAR Proteins: Structure and Catalytic Mechanism. In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_144

Download citation

Publish with us

Policies and ethics