Advertisement

Roles of Lineage-Determining Transcription Factors in Establishing Open Chromatin: Lessons From High-Throughput Studies

  • Sven Heinz
  • Christopher K. GlassEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 356)

Abstract

The interpretation of the regulatory information of the genome by sequence-specific transcription factors lies at the heart of the specification of cellular identity and function. While most cells in a complex metazoan organism express hundreds of such transcription factors, the underlying mechanisms by which they ultimately achieve their functional locations within different cell types remain poorly understood. Here, we contrast various models of how cell type-specific binding patterns may arise using available evidence from ChIP-Seq experiments obtained in tractable developmental model systems, particularly the hematopoietic system. The data suggests a model whereby relatively small sets of lineage-determining transcription factors jointly compete with nucleosomes to establish their cell type-specific binding patterns. These binding sites gain histone marks indicative of active cis-regulatory elements and define a large fraction of the enhancer-like regions differentiated cell types. The formation of these regions of open chromatin enables the recruitment of secondary transcription factors that contribute additional transcription regulatory functionality required for the cell type-appropriate expression of genes with both general and specialized cellular functions.

Keywords

Open Chromatin Histone H3K4 Ternary Complex Formation Histone Modification Pattern Transcription Factor Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams CC, Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15(3):1405–1421PubMedGoogle Scholar
  2. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, Dent AL, Tangirala RK, Evans RM (2010) Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. Genes Dev 24(24):2760–2765PubMedCrossRefGoogle Scholar
  3. Beato M, Eisfeld K (1997) Transcription factor access to chromatin. Nucleic Acids Res 25(18):3559–3563PubMedCrossRefGoogle Scholar
  4. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956. doi: 10.1016/j.cell.2005.08.020 PubMedCrossRefGoogle Scholar
  5. Boyes J, Felsenfeld G (1996) Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J 15(10):2496–2507PubMedGoogle Scholar
  6. Bulger M, Groudine M (2009) Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339(2):250–257PubMedCrossRefGoogle Scholar
  7. Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, Parra M, Zimmermann T, Rapino F, Rodriguez-Ubreva J, Ballestar E, Graf T (2009) A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5(5):554–566. doi: 10.1016/j.stem.2009.10.004 PubMedCrossRefGoogle Scholar
  8. Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18(4):662–674PubMedCrossRefGoogle Scholar
  9. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6):1106–1117. doi: 10.1016/j.cell.2008.04.043 PubMedCrossRefGoogle Scholar
  10. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9(2):279–289PubMedCrossRefGoogle Scholar
  11. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800PubMedCrossRefGoogle Scholar
  12. Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C, Tagoh H, Busslinger M (2009) Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30(4):508–520. doi: 10.1016/j.immuni.2009.01.012 PubMedCrossRefGoogle Scholar
  13. DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288(5470):1439–1441. doi: 10.1126/science.288.5470.1439 PubMedCrossRefGoogle Scholar
  14. Eisenbeis CF, Singh H, Storb U (1993) PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2–4 enhancer. Mol Cell Biol 13(10):6452–6461PubMedGoogle Scholar
  15. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10(9):605–616PubMedCrossRefGoogle Scholar
  16. Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T (2008) PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 105(16):6057–6062. doi: 10.1073/pnas.0711961105 PubMedCrossRefGoogle Scholar
  17. Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, Vega VB, Cacheux-Rataboul V, Lim B, Lufkin T, Ng HH (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11(2):197–203. doi: 10.1038/ncb1827 PubMedCrossRefGoogle Scholar
  18. Friedman JR, Kaestner KH (2006) The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63(19–20):2317–2328PubMedCrossRefGoogle Scholar
  19. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64PubMedCrossRefGoogle Scholar
  20. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328PubMedCrossRefGoogle Scholar
  21. Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4(6):e1000106PubMedCrossRefGoogle Scholar
  22. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. doi: 10.1038/ng1966 PubMedCrossRefGoogle Scholar
  23. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112. doi: 10.1038/nature07829 PubMedCrossRefGoogle Scholar
  24. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589PubMedCrossRefGoogle Scholar
  25. Hollenhorst PC, Chandler KJ, Poulsen RL, Johnson WE, Speck NA, Graves BJ (2009) DNA specificity determinants associate with distinct transcription factor functions. PLoS Genet 5(12):e1000778 (Epub 2009 Dec 18)PubMedCrossRefGoogle Scholar
  26. Hoogenkamp M, Lichtinger M, Krysinska H, Lancrin C, Clarke D, Williamson A, Mazzarella L, Ingram R, Jorgensen H, Fisher A, Tenen DG, Kouskoff V, Lacaud G, Bonifer C (2009) Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 114(2):299–309. doi: 10.1182/blood-2008-11-191890 PubMedCrossRefGoogle Scholar
  27. Jakobsen JS, Braun M, Astorga J, Gustafson EH, Sandmann T, Karzynski M, Carlsson P, Furlong EE (2007) Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes Dev 21(19):2448–2460. doi: 10.1101/gad.437607 PubMedCrossRefGoogle Scholar
  28. Jhunjhunwala S, van Zelm MC, Peak MM, Murre C (2009) Chromatin architecture and the generation of antigen receptor diversity. Cell 138(3):435–448PubMedCrossRefGoogle Scholar
  29. Kadonaga JT (2004) Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116(2):247–257PubMedCrossRefGoogle Scholar
  30. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435PubMedCrossRefGoogle Scholar
  31. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187PubMedCrossRefGoogle Scholar
  32. Krum SA, Miranda-Carboni GA, Lupien M, Eeckhoute J, Carroll JS, Brown M (2008) Unique ERalpha cistromes control cell type-specific gene regulation. Mol Endocrinol 22(11):2393–2406. doi: 10.1210/me.2008-0100 PubMedCrossRefGoogle Scholar
  33. Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim HP, Oh J, Tunyaplin C, Carotta S, Donovan CE, Goldman ML, Tailor P, Ozato K, Levy DE, Nutt SL, Calame K, Leonard WJ (2009) Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31(6):941–952PubMedCrossRefGoogle Scholar
  34. Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25(5):731–744. doi: 10.1016/j.immuni.2006.09.011 PubMedCrossRefGoogle Scholar
  35. Lefterova MI, Steger DJ, Zhuo D, Qatanani M, Mullican SE, Tuteja G, Manduchi E, Grant GR, Lazar MA (2010) Cell-specific determinants of peroxisome proliferator-activated receptor gamma function in adipocytes and macrophages. Mol Cell Biol 30(9):2078–2089 (Epub 2010 Feb 22)PubMedCrossRefGoogle Scholar
  36. Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, Hechmer A, Simirenko L, Stapleton M, Luengo Hendriks CL, Chu HC, Ogawa N, Inwood W, Sementchenko V, Beaton A, Weiszmann R, Celniker SE, Knowles DW, Gingeras T, Speed TP, Eisen MB, Biggin MD (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6(2):e27. doi: 10.1371/journal.pbio.0060027 PubMedCrossRefGoogle Scholar
  37. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293PubMedCrossRefGoogle Scholar
  38. Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R, Sigvardsson M, Hagman J, Espinoza CA, Dutkowski J, Ideker T, Glass CK, Murre C (2010) A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 11(7):635–643 (Epub 2010 Jun 13)PubMedCrossRefGoogle Scholar
  39. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. 6th edn. W.H.Freeman & Co, New YorkGoogle Scholar
  40. Love JJ, Li X, Case DA, Giese K, Grosschedl R, Wright PE (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376(6543):791–795PubMedCrossRefGoogle Scholar
  41. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132(6):958–970. doi: 10.1016/j.cell.2008.01.018 PubMedCrossRefGoogle Scholar
  42. MacArthur S, Li XY, Li J, Brown JB, Chu HC, Zeng L, Grondona BP, Hechmer A, Simirenko L, Keranen SV, Knowles DW, Stapleton M, Bickel P, Biggin MD, Eisen MB (2009) Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 10(7):R80. doi: 10.1186/gb-2009-10-7-r80 PubMedCrossRefGoogle Scholar
  43. Miller JA, Widom J (2003) Collaborative competition mechanism for gene activation in vivo. Mol Cell Biol 23(5):1623–1632PubMedCrossRefGoogle Scholar
  44. Mirny LA (2010) Nucleosome-mediated cooperativity between transcription factors. Proc Natl Acad Sci 107(52):22534–22539PubMedCrossRefGoogle Scholar
  45. Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33(1):12–24PubMedCrossRefGoogle Scholar
  46. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303(5662):1378–1381. doi: 10.1126/science.1089769 PubMedCrossRefGoogle Scholar
  47. Ogata K, Sato K, Tahirov TH (2003) Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr Opin Struct Biol 13(1):40–48PubMedCrossRefGoogle Scholar
  48. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644PubMedCrossRefGoogle Scholar
  49. Palii CG, Perez-Iratxeta C, Yao Z, Cao Y, Dai F, Davidson J, Atkins H, Allan D, Dilworth FJ, Gentleman R, Tapscott SJ, Brand M (2010) Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J 2010:21Google Scholar
  50. Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol Cell Biol 12(1):368–378PubMedGoogle Scholar
  51. Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes AP, Wederell ED, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless PA, Hirst M, Marra MA, Jones SJ (2008) Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 18(12):1906–1917. doi: 10.1101/gr.078519.108 PubMedCrossRefGoogle Scholar
  52. Sandmann T, Jensen LJ, Jakobsen JS, Karzynski MM, Eichenlaub MP, Bork P, Furlong EE (2006) A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell 10(6):797–807. doi: 10.1016/j.devcel.2006.04.009 PubMedCrossRefGoogle Scholar
  53. Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EE (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21(4):436–449. doi: 10.1101/gad.1509007 PubMedCrossRefGoogle Scholar
  54. Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20(5):578–588PubMedCrossRefGoogle Scholar
  55. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451(7178):535–540PubMedCrossRefGoogle Scholar
  56. Sérandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Metivier R, Salbert G, Eeckhoute J (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 21(4):555–565 (Epub 2011 Jan 13)Google Scholar
  57. Smale ST (2010) Pioneer factors in embryonic stem cells and differentiation. Curr Opin Gen Dev 20(5):519–526 (Epub 2010 Jul 16)CrossRefGoogle Scholar
  58. Sullivan AL, Benner C, Heinz S, Huang W, Xie L, Miano JM, Glass CK (2010) SRF utilizes distinct promoter and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol Cell Biol 31(4):861–875 (Epub 2010 Dec 6)PubMedCrossRefGoogle Scholar
  59. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  60. Vashee S, Melcher K, Ding WV, Johnston SA, Kodadek T (1998) Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein–protein interactions. Curr Biol 8(8):452–458PubMedCrossRefGoogle Scholar
  61. Verzi MP, Shin H, He HH, Sulahian R, Meyer CA, Montgomery RK, Fleet JC, Brown M, Liu XS, Shivdasani RA (2010) Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev Cell 19(5):713–726. doi: 10.1016/j.devcel.2010.10.006 PubMedCrossRefGoogle Scholar
  62. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF, Göttgens B (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7(4):532–544PubMedCrossRefGoogle Scholar
  63. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117(5):663–676. doi: 10.1016/S0092-8674(04)00419-2 PubMedCrossRefGoogle Scholar
  64. Zaret KS, Watts J, Xu J, Wandzioch E, Smale ST, Sekiya T (2008) Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. Cold Spring Harb Symp Quant Biol 73:119–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations