Skip to main content

Concepts and Ways to Amplify the Antitumor Immune Response

  • Chapter
  • First Online:
Cancer Immunology and Immunotherapy

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 344))

Abstract

In this chapter, a detailed description of how the innate and adaptive immune responses interact with malignant cells is presented. In addition, we discuss how developing tumors establish themselves, and how they benefit on one hand and organize their defense against the immune system on the other hand. New data from three tumor model systems in mice are discussed; in particular, the intricate interactions between the immune cells and the tumor cells are highlighted. With the present data and knowledge, we conclude that a first prerequisite for the combat against tumors is the activation of the innate immune system via external danger signals or damage signals and internal danger signals. The second prerequisite for efficient tumor cell eradication is combined therapeutic approaches of physical, chemical, pharmacological, and immunological origin. Finally, we propose new ways for further investigation of the relationship linking tumor cells and our defense system. It appears mandatory to understand how the malignant cells render the adaptive immune cells tolerant instead of turning them into aggressive effectors and memory cells. Perhaps, the most important thing, for immunologists and clinicians, to understand is that tumor cells must not be viewed just as antigens but much more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EJ, Strop P, Shin S, Chien YH, Garcia KC (2008) An autonomous CDR3δ is sufficient for recognition of the nonclassical MHCI molecules T10 and T22 by γδ T cells. Nat Immunol 9:777–784

    PubMed  CAS  Google Scholar 

  • Allison TJ, Winter CC, Fournié JJ, Bonneville M, Garboczi DN (2001) Structure of a human γδ T-cell antigen receptor. Nature 411:820–824

    PubMed  CAS  Google Scholar 

  • Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LM, Rolink A, Klein L (2007) Selection of FOXP3+ regulatory T cells specific for self antigen expressed and presented by AIRE+ medullary thymic epithelial cells. Nat Immunol 8:351–358

    PubMed  CAS  Google Scholar 

  • Baniyash M (2004) TCRζ-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 4:675–687

    PubMed  CAS  Google Scholar 

  • Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177–186

    PubMed  CAS  Google Scholar 

  • Bhardwaj N (2007) Harnessing the immune system to treat cancer. J Clin Invest 117:1130–1136

    PubMed  CAS  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leuk Biol 81:1–5

    CAS  Google Scholar 

  • Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440:808–812

    PubMed  CAS  Google Scholar 

  • Böhm W, Thoma S, Leithäuser F, Möller P, Schirrmbeck R, Reimann J (1998) T cell-mediated, IFNγ-facilitated rejection of murine B16 melanomas. J Immunol 161:897–908

    PubMed  Google Scholar 

  • Buckanivich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, Katsaros D, O’Brien-Jenkins A, Gimotty PA, Coukos G (2008) Endothelin B receptor mediates the endothelial barrier to T-cell homing to tumors and disables immune therapy. Nat Med 14:28–36

    Google Scholar 

  • Caccamo N, Meravgilia S, Scarpa F, Mendola CL, Santini D, Bonanno CT, Missiano G, Dieli F, Salerno A (2008) Aminobisphosphonate-activated γδ T cells in immunotherapy of cancer: doubts no more. Expert Opin Biol Ther 8:875–883

    PubMed  CAS  Google Scholar 

  • Call ME, Wucherpfennig KW (2007) Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 7:841–850

    PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    PubMed  CAS  Google Scholar 

  • Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49

    PubMed  CAS  Google Scholar 

  • Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA4-mediated inhibition in regulation of T-cell responses: mechanisms and manipulation in tumor immunotherapy. Ann Rev Immunol 19:565–594

    CAS  Google Scholar 

  • Chang WS, Kim JY, Kim YJ, Kim YS, Lee JM, Azuma M, Yagita H, Kang CY (2008) Programmed death-1/programmed death ligand interaction regulates the induction and maintenance of NKT cell anergy. J Immunol 181:6707–6710

    PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei K, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGFβ induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    PubMed  CAS  Google Scholar 

  • Cordaro TA, de Visser KE, Tirion FH, Schumacher TNM, Kruisbeek AM (2002) Can the low-avidity self-specific T cell repertoire be exploited for tumor rejection? J Immunol 168:651–660

    PubMed  CAS  Google Scholar 

  • Corthay A, Skovstedt DK, Lundin KU, Rösjö E, Omholt H, Hofgaard PO, Haraldsen G, Bogen B (2005) Primary anti-tumor immune response mediated by CD4+ T cells. Immunity 22:371–383

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  • Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA, Miller MS, Weir HM, Du W, Delong CJ (2003) Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA 100:6682–6687

    PubMed  CAS  Google Scholar 

  • Curiel TJ (2007) Treg cells and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    PubMed  CAS  Google Scholar 

  • Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci USA 93:7–12

    PubMed  CAS  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    PubMed  Google Scholar 

  • Denizot F, Rubin B (1985) Murine and human T-cell factors that induce the differentiation of normal mouse lymphocytes into cytotoxic cells copurify with interleukin-2. Scand J Immunol 22:401–413

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The three aces of cancer immunoediting. Ann Rev Immunol 22:329–360

    CAS  Google Scholar 

  • Entin I, Plotnikov A, Korenstein R, Keisari Y (2003) Tumor growth retardation, cure, and induction of anti-tumor immunity in B16 melanoma-bearing mice by mow electric field-enhanced chemotherapy. Clin Cancer Res 9:3190–3197

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    PubMed  CAS  Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and langerhans cells. Nat Rev Immunol 2:77–84

    PubMed  CAS  Google Scholar 

  • Förster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    PubMed  Google Scholar 

  • Fujii SI (2008) Exploiting dendritic cells and natural killer T cells in immunotherapy against malignancies. Trends Immunol 29:242–249

    PubMed  CAS  Google Scholar 

  • Gajewsky TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Google Scholar 

  • Ganss R, Arnold B, Hämmerling GJ (2004) Overcoming tumor-intrinsic resistance to immune effector function. Eur J Immunol 34:2635–2641

    PubMed  CAS  Google Scholar 

  • Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z (2003) γδ T cells provide an early source of interferon γ in tumor immunity. J Exp Med 198:433–442

    PubMed  CAS  Google Scholar 

  • Garbi N, Arnold B, Gordon S, Hämmerling GJ, Ganss R (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172:5861–5869

    PubMed  CAS  Google Scholar 

  • Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leuk Biol 79:896–903

    CAS  Google Scholar 

  • Geisler C, Rubin B, Bauguil-Caspar S, Champagne E, Vangsted A, Hou X, Gajhede M (1992) Structural mutations of C-domains in members of the immunoglobulin superfamily: consequences for the interaction between the T cell antigen receptor and the CD3-ζ homodimer. J Immunol 148:3469–3477

    PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    PubMed  CAS  Google Scholar 

  • Gonthier M, Llobera R, Arnaud J, Rubin B (2004) Self-reactive T cell receptor-reactive CD8+ T cells inhibit T cell lymphoma growth in vivo. J Immunol 173:7062–7069

    PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med 7:1118–1122

    PubMed  CAS  Google Scholar 

  • Gorelik E, Gunji Y, Herberman RB (1988) H-2 antigen expression and sensitivity of BL6 melanoma cells to natural killer cell cytotoxicity. J Immunol 140:2096–2102

    PubMed  CAS  Google Scholar 

  • Green DR (2008) Fas Bim Boom! Immunity 28:141–143

    PubMed  CAS  Google Scholar 

  • Hanahan D, Wienberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT (2008) Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452:356–361

    PubMed  CAS  Google Scholar 

  • Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, von Kap-Herr C, Pettenati MJ, Sanders AM, Weir HM, Du W, Kim J, Simpson AJG, Old LJ, Cui Z (2006a) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103:7753–7758

    PubMed  CAS  Google Scholar 

  • Hicks AM, Willingham MC, Du W, Pang CS, Old LJ, Cui Z (2006b) Effector mechanisms of the anti-cancer immune response of macrophages in SR/CR mice. Cancer Immun 6:11–20

    PubMed  Google Scholar 

  • Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z, Singh H, Forbes K, Chruscinski A, Smeyne R, van Oers NSC, Utz PJ, Vignali DAA (2008) Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol 9:658–666

    PubMed  CAS  Google Scholar 

  • Homey B, Müller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer. Nat Rev Immunol 2:175–184

    PubMed  CAS  Google Scholar 

  • Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T-cell receptor repertoires. Nat Immunol 7:401–410

    PubMed  CAS  Google Scholar 

  • Hume DA (2008) Macrophages as APC and the dendritic cell myth. J Immunol 181:5829–5835

    PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    PubMed  CAS  Google Scholar 

  • Jerne NK (1984) Idiotypic networks and other preconceived ideas. Immunol Rev 79:5–24

    PubMed  CAS  Google Scholar 

  • Kalinski P, Moser M (2005) Consensual immunity: success-driven development of Th1 and Th2 responses. Nat Rev Immunol 5:251–260

    PubMed  CAS  Google Scholar 

  • Kane KP, Silver ET, Hazes B (2001) Specificity and function of activating Ly-49 receptors. Immunol Rev 181:104–114

    PubMed  CAS  Google Scholar 

  • Kärre K, Ljunggren HG, Piontel G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    PubMed  Google Scholar 

  • Kawano YI, Tanigushi K, Toshitani A, Nomoto K (1986) Synergistic defense system by cooperative natural effectors against metastasis of B16 melanoma cells in H-2 associated control: different behavior of H-2+ and H-2- cells in metastatic processes. J Immunol 136:4729–4734

    PubMed  CAS  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32

    PubMed  CAS  Google Scholar 

  • Kemper C, Mitchell LM, Zhang L, Hourcade DE (2008) The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci USA 105:9023–9028

    PubMed  CAS  Google Scholar 

  • Kiessling R (1997) Signals from lymphocytes in colon cancer. Gut 40:153–158

    PubMed  CAS  Google Scholar 

  • Kim KD, Zhao J, Auh S, Yang X, Du P, Tang H, Fu YX (2007) Adaptive immune cells temper initial innate responses. Nat Med 13:1248–1252

    PubMed  CAS  Google Scholar 

  • Krogsgaard M, Davis MM (2005) How T cells “see” antigen. Nat Immunol 6:239–247

    PubMed  CAS  Google Scholar 

  • Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    PubMed  CAS  Google Scholar 

  • Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L (2008) Tumor-educated tolerogenic dendritic cells induce CD3ε down-regulation and apoptosis of T cells through oxygen-dependent pathways. J Immunol 181:3089–3098

    PubMed  CAS  Google Scholar 

  • Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, Lundeen T, Bonnotte B, Katsanis E (2008) Imatinib mesylate inhibits CD4+CD25+ regulatory T-cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181:6955–6965

    PubMed  CAS  Google Scholar 

  • Lee HH, Hoeman CM, Hardaway JC, Guloglu FB, Ellis JS, Jain R, Divekar R, Tartar DM, Haymaker CL, Zaghouani H (2008) Delayed maturation of an IL-12 producing dendritic cell subset explains the early Th2 bias in neonatal immunity. J Exp Med 205:2269–2280

    PubMed  CAS  Google Scholar 

  • Ljunggren HG, Kärre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759

    PubMed  CAS  Google Scholar 

  • Lu B, Finn OJ (2008) T-cell death and cancer immune tolerance. Cell Death Differ 15:70–79

    PubMed  Google Scholar 

  • Ludewig B, Ochsenbein AE, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM (2000) Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191:795–803

    PubMed  CAS  Google Scholar 

  • MacDonald AS, Maizels RM (2008) Alarming dendritic cells for Th2 induction. J Exp Med 205:13–17

    PubMed  CAS  Google Scholar 

  • Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, Coukos G, Lambris JD (2008) Modulation of the antitumor immune response by complement. Nat Immunol 9:1225–1235

    PubMed  CAS  Google Scholar 

  • McKee AS, Munks MW, Marrack P (2007) How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27:687–690

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    PubMed  CAS  Google Scholar 

  • Mills KHG (2008) TLR9 turns the tide on Treg cells. Immunity 29:518–520

    PubMed  CAS  Google Scholar 

  • Mocikat R, Braumüller H, Gumy A, Egeter O, Ziegler H, Reusch U, Bubeck A, Louis J, Mailhammer R, Riethmuller G, Koszinowski U, Rocken M (2003) Natural killer cells activated by MHC class Ilow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    PubMed  CAS  Google Scholar 

  • Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Engelhard VH, Willcox BE (2008) Phosphorylation-dependent interaction between antigenic peptides and MHCI: a molecular basis for the presentation of transformed self. Nat Immunol 9:1236–1243

    PubMed  CAS  Google Scholar 

  • Morgan DJ, Kreuwel HTC, Fleck S, Levitsky HL, Pardoll DM, Sherman LA (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643–651

    PubMed  CAS  Google Scholar 

  • Moutsopoulos NM, Wen J, Wahl SM (2008) TGFβ and tumors – an ill-fated alliance. Curr Opin Immunol 20:234–240

    PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes – Bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    PubMed  CAS  Google Scholar 

  • Muller AJ, Scherle PA (2006) Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 6:613–625

    PubMed  CAS  Google Scholar 

  • Munoz-Fontela C, Macip S, Martinez-Sobrido L, Brown L, Ashour J, Garcia-Sastre A, Lee SW, Aaronson SA (2008) Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med 205:1929–1938

    PubMed  CAS  Google Scholar 

  • Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E (2003) Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102:964–971

    PubMed  CAS  Google Scholar 

  • Nomura T, Sakagushi S (2007) FOXP3 and AIRE in thymus-generated Treg cells: a link in self-tolerance. Nat Immunol 8:333–334

    PubMed  CAS  Google Scholar 

  • Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, Yu XZ, Dong C (2006) T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–2633

    PubMed  CAS  Google Scholar 

  • Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227–238

    PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    PubMed  CAS  Google Scholar 

  • Petroff MG (2005) Immune interactions at the maternal-fetal interface. J Reprod Immunol 68:1–13

    PubMed  CAS  Google Scholar 

  • Preckel T, Grimm R, Martin S, Weltzien HU (1997) Altered hapten ligands antagonize trinitrophenyl-specific cytotoxic T cells and block internalization of hapten-specific receptors. J Exp Med 185:1803–1813

    PubMed  CAS  Google Scholar 

  • Prehn RT, Prehn LM (2008) The flip side of immune surveillance: immune dependency. Immunol Rev 222:341–356

    PubMed  CAS  Google Scholar 

  • Prévost-Blondel A, Zimmermann C, Stemmer C, Kulmburg P, Rosenthal FM, Pircher H (1998) Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J Immunol 161:2187–2194

    PubMed  Google Scholar 

  • Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6:280–286

    PubMed  CAS  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205:2125–2138

    PubMed  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Ann Rev Immunol 25:267–296

    CAS  Google Scholar 

  • Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHCI expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    PubMed  CAS  Google Scholar 

  • Riond J, Rodriguez S, Nicolau ML, al Saati T, Gairin JE (2009) In vivo major histocompatibility complex class I (MHCI) expression on MHCIlow tumor cells is regulated by γδ T and NK cells during the early steps of tumor growth. Cancer Immun 9:10

    PubMed  Google Scholar 

  • Rodriguez PC, Zea AH, Culotta KS, Zabaletta J, Ochoa JB, Ochoa AC (2002) Regulation of T-cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277:21123–21128

    PubMed  CAS  Google Scholar 

  • Roehm U, Roth E, Brommer K, Dumrese T, Rosenthal FM, Pircher H (2002) Lack of effector cell function and altered tetramer binding of tumor-infiltrating lymphocytes. J Immunol 169:5522–5530

    Google Scholar 

  • Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436

    PubMed  CAS  Google Scholar 

  • Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, Schwärzler C, Junt T, Vosbol H, Meingassner JG, Mao X, Werner G, Rot A, Carballido JM (2008) Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 9:1261–1269

    PubMed  CAS  Google Scholar 

  • Rubin B (2009) Natural immunity has significant impact on the immune response against cancer. Scand J Immunol 69:275–290

    PubMed  CAS  Google Scholar 

  • Rubin B, Sönderstrup G (2004) Citrullination of self-proteins and autoimmunity. Scand J Immunol 60:112–120

    PubMed  CAS  Google Scholar 

  • Rubin B, Wigzell H (1973) On the nature of hapten-reactive lymphocytes. Nature 242:467–469

    PubMed  CAS  Google Scholar 

  • Rubin B, Riond J, Courtiade L, Roullet N and Gairin JE (2008) The innate immune system recognizes and regulates MHCI expression on MHCIlow tumor cells. Cancer Immun 8:14–25

    PubMed  Google Scholar 

  • Rudd BD, Brien JD, Davenport MP, Nikolich-Zugich J (2008) TLR ligands increase TCR triggering by slowing pMHCI decay rates. J Immunol 181:5199–5203

    PubMed  CAS  Google Scholar 

  • Ruffell B, Johnson P (2008) Hyaluronan induces cell death in activated T cells through CD44. J Immunol 181:7044–7054

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hon S, Fehervari Z, Shimizu J, Takahashi T, Nomura T (2006) Foxp3+ CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27

    PubMed  CAS  Google Scholar 

  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–433

    PubMed  CAS  Google Scholar 

  • Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH (2008) The effector T cells of Diabetic subjects are resistant to regulation via CD4+CD25+ regulatory T cells. J Immunol 181:7350–7355

    PubMed  CAS  Google Scholar 

  • Schüler T, Blankenstein T (2003) CD8+ effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J Immunol 170:4427–4431

    PubMed  Google Scholar 

  • Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61:1095–1099

    PubMed  CAS  Google Scholar 

  • Serre K, Machy P, Grivel JC, Jolly G, Brun N, Barbet J, Leserman L (1998) Efficient presentation of multivalent antigens targeted to various cell surface molecules of dendritic cells and surface Ig of antigen-specific B cells. J Immunol 161:6059–6067

    PubMed  CAS  Google Scholar 

  • Sha Y, Zmijewski J, Xu Z, Abraham E (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180:2531–2537

    PubMed  CAS  Google Scholar 

  • Singh S, Ross SR, Acena M, Rowley DA, Schreiber H (1992) Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med 175:139–146

    PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  • Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM (2000) Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13:529–538

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Godfrey DI (2000) NKT cells and tumor immunity – a double-edged sword. Nat Immunol 1:459–460

    PubMed  CAS  Google Scholar 

  • Sriram V, Cho S, Li P, O’Donnell PW, Dunn C, Hayakawa K, Blum JS, Brutkiewicz RR (2002) Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell hybridoma by natural killer T (NKT) cells. Proc Natl Acad Sci USA 99:8197–8202

    PubMed  CAS  Google Scholar 

  • Steinman RM, Turley S, Mellman I, Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191:411–416

    PubMed  CAS  Google Scholar 

  • Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores anti-tumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370

    PubMed  CAS  Google Scholar 

  • Sugiyama H (2008) Editorial overview. Curr Opinion Immunol 20:208–210

    CAS  Google Scholar 

  • Tato CM, Cua DJ (2008) Alternative lifestyles of T cells. Nat Immunol 9:1323–1325

    PubMed  CAS  Google Scholar 

  • Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LB, Rabinovich GA (2007) Differential glycosylation of Th1, Th2 and Th17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8:825–834

    PubMed  CAS  Google Scholar 

  • van Elsas A, Sutmuller RPM, Hurwitz AA, Ziskin J, Villasenor J, Medema JP, Overwijk WW, Restifo NP, Melief CJM, Offringa R, Allison JP (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194:481–489

    PubMed  Google Scholar 

  • van Stipdonk MJB, Hardenberg G, Bijker MS, Lemmens E, Droin NM, Green DR, Schoenberger SP (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4:361–365

    PubMed  Google Scholar 

  • Vantourout P, Martinez LO, Fabre A, Collet X, Champagne E (2008) Ecto-F1-ATPase and MHCI close association on cell membranes. Mol Immunol 45:485–492

    PubMed  CAS  Google Scholar 

  • Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    PubMed  CAS  Google Scholar 

  • Vivier E, Anfossi N (2004) Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4:190–198

    PubMed  CAS  Google Scholar 

  • Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilivich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by stat-3 signaling in tumor cells. Nat Med 10:48–54

    PubMed  Google Scholar 

  • Wierzbicki A, Gil M, Ciesielski M, Fenstermaker RA, Kaneko Y, Rotika H, Lau JT, Kozbor D (2008) Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. J Immunol 181:6644–6653

    PubMed  CAS  Google Scholar 

  • Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181

    PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MN, Steinman RM (2008) CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181:6923–6933

    PubMed  CAS  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGFβ signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    PubMed  CAS  Google Scholar 

  • Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    PubMed  CAS  Google Scholar 

  • Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichelbaum RR, Rowley DA, Kranz DM, Schreiber H (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    PubMed  CAS  Google Scholar 

  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    PubMed  CAS  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 6:295–307

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank the CNRS, Pierre Fabre Laboratories, the french Association for Research on Cancer ARC and the European Union for grants and financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Edouard Gairin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubin, B., Gairin, J.E. (2010). Concepts and Ways to Amplify the Antitumor Immune Response. In: Dranoff, G. (eds) Cancer Immunology and Immunotherapy. Current Topics in Microbiology and Immunology, vol 344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_89

Download citation

Publish with us

Policies and ethics