Skip to main content

Targeting the RTK-PI3K-mTOR Axis in Malignant Glioma: Overcoming Resistance

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 347))

Abstract

Gliomas represent the most common primary brain tumor and among the most aggressive of cancers. Patients with glioma typically relapse within a year of initial diagnosis. Recurrent glioma is associated with acquired therapeutic resistance. Although neurosurgical resection, radiation and chemotherapy provide clear benefit, survival remains disappointing. It is, therefore, critical that we identify effective medical therapies and appropriate tumor biomarkers in patients at initial presentation, to promote durable responses in glioma. Pathways linking receptor tyrosine kinases, PI3 kinase, Akt, and mTOR feature prominently in this disease and represent therapeutic targets. Small molecules that inhibit one or more of these kinases are now being introduced into the clinic and may have some activity. Disappointingly, however, preclinical studies demonstrate these agents to be primarily cytostatic rather than cytotoxic to glioma cells. Here, we detail activation of the EGFR-PI3K-Akt-mTOR signaling network in glioma, review class I PI3K inhibitors, discuss roles for Akt, PKC and mTOR, and the importance of biomarkers. We further delineate attempts to target both single and multiple components within the EGFR-PI3K-Akt-mTOR axes. Lastly, we discuss the need to combine targeted therapies with cytotoxic chemotherapy, radiation and with inhibitors of survival signaling to improve outcomes in glioma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CML:

Chronic myelongenous leukemia

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma multiforme

mTOR:

Mammalian target of rapamycin

PKC:

Protein kinase C

PI3K:

Phosphatidylinositol 3′kinase

RTK:

Receptor tyrosine kinase

References

  • Brandes AA, Franceschi E, Tosoni A, Hegi ME, Stupp R (2008) Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin Cancer Res 14:957–960

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  • Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, De Angelis L, Raizer J et al (2005) Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Zhou LJ, Entin-Meer M, Yang X, Donker M, Knight ZA, Weiss W, Shokat KM, Haas-Kogan D, Stokoe D (2008) Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7:841–850

    Article  PubMed  CAS  Google Scholar 

  • Cheng CK, Fan QW, Weiss WA (2009) PI3K signaling in glioma–animal models and therapeutic challenges. Brain Pathol 19:112–120

    Article  PubMed  CAS  Google Scholar 

  • Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C, Azzolino O, Gonella C, Rubinetto C, Wu H et al (2008) Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1:ra3

    Article  PubMed  Google Scholar 

  • Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D et al (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5:e8

    Article  PubMed  Google Scholar 

  • Copp J, Manning G, Hunter T (2009) TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69:1821–1827

    Article  PubMed  CAS  Google Scholar 

  • de Groot JF, Gilbert MR, Aldape K, Hess KR, Hanna TA, Ictech S, Groves MD, Conrad C, Colman H, Puduvalli VK et al (2008) Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J Neurooncol 90:89–97

    Article  PubMed  Google Scholar 

  • Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC et al (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183:101–116

    Article  PubMed  CAS  Google Scholar 

  • Doherty L, Gigas DC, Kesari S, Drappatz J, Kim R, Zimmerman J, Ostrowsky L, Wen PY (2006) Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 67:156–158

    Article  PubMed  CAS  Google Scholar 

  • Fan QW, Specht KM, Zhang C, Goldenberg DD, Shokat KM, Weiss WA (2003) Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach. Cancer Res 63:8930–8938

    PubMed  CAS  Google Scholar 

  • Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, Shokat KM, Weiss WA (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9:341–349

    Article  PubMed  CAS  Google Scholar 

  • Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM, Weiss WA (2007) A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67:7960–7965

    Article  PubMed  CAS  Google Scholar 

  • Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD, McCormick F, Shokat KM, Weiss WA (2009) EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2:ra4

    Article  PubMed  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2. PLoS Biol 7:e38

    Article  PubMed  Google Scholar 

  • Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, Scopece L, Blatt V, Urbini B, Pession A et al (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN, Banks C, Capen A, Goode R, Lewis JE et al (2005) The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65:7462–7469

    Article  PubMed  CAS  Google Scholar 

  • Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M et al (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y et al (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 11:507–514

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282:21206–21212

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  • Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD et al (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297:1031–1034

    PubMed  CAS  Google Scholar 

  • Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68:6271–6280

    Article  PubMed  CAS  Google Scholar 

  • Persson A, Fan Q-W, Phillips J, Weiss WA (2007) Glioma. Elsevier, San Diego

    Google Scholar 

  • Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M, Kapadia A, Rabbitt J, Page MS, Fedoroff A et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 8:67–78

    Article  PubMed  CAS  Google Scholar 

  • Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, Kabuubi P, Ayers-Ringler J, Rabbitt J, Page M et al (2009) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27:579–584

    Article  PubMed  CAS  Google Scholar 

  • Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J, O'Neill P, McKenna WG, Patel S, Bernhard EJ (2008) Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res 68:5915–5923

    Article  PubMed  CAS  Google Scholar 

  • Reardon DA, Quinn JA, Vredenburgh JJ, Gururangan S, Friedman AH, Desjardins A, Sathornsumetee S, Herndon JE II, Dowell JM, McLendon RE et al (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 12:860–868

    Article  PubMed  CAS  Google Scholar 

  • Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE et al (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I et al (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  PubMed  CAS  Google Scholar 

  • Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287–290

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mTOR inhibitor reveals rapamycin-insensitive functions of mTORC1. J Biol Chem 284:8023–8032

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM, Cavenee WK, Mellinghoff IK, Cloughesy TF, Sawyers CL, Mischel PS (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66:7864–7869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Kevan Shokat for useful discussions and to Theo Nicolaides for critical review. We acknowledge support from NIH P50CA097257, Burroughs Wellcome Fund, American Brain Tumor Association, The Brain Tumor Society, Accelerate Brain Cancer Cure; Alex’s Lemonade Stand, Children’s National Brain Tumor, Wallace H. Coulter, Katie Dougherty, Pediatric Brain Tumor, Samuel G. Waxman and V Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fan, QW., Weiss, W.A. (2010). Targeting the RTK-PI3K-mTOR Axis in Malignant Glioma: Overcoming Resistance. In: Rommel, C., Vanhaesebroeck, B., Vogt, P. (eds) Phosphoinositide 3-kinase in Health and Disease. Current Topics in Microbiology and Immunology, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_67

Download citation

Publish with us

Policies and ethics