Skip to main content

The Regulation of Class IA PI 3-Kinases by Inter-Subunit Interactions

  • Chapter
  • First Online:
Book cover Phosphoinositide 3-kinase in Health and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 346))

Abstract

Phosphoinositide 3-kinases (PI 3-kinases) are activated by growth factor and hormone receptors, and regulate cell growth, survival, motility, and responses to changes in nutritional conditions (Engelman et al. 2006). PI 3-kinases have been classified according to their subunit composition and their substrate specificity for phosphoinositides (Vanhaesebroeck et al. 2001). The class IA PI 3-kinase is a heterodimer consisting of one regulatory subunit (p85α, p85β, p55α, p50α, or p55γ) and one 110-kDa catalytic subunit (p110α, β or δ). The Class IB PI 3-kinase is also a dimer, composed of one regulatory subunit (p101 or p87) and one catalytic subunit (p110γ) (Wymann et al. 2003). Class I enzymes will utilize PI, PI[4]P, or PI[4,5]P2 as substrates in vitro, but are thought to primarily produce PI[3,4,5]P3 in cells.

The crystal structure of the Class IB PI 3-kinase catalytic subunit p110γ was solved in 1999 (Walker et al. 1999), and crystal or NMR structures of the Class IA p110α catalytic subunit and all of the individual domains of the Class IA p85α regulatory subunit have been solved (Booker et al. 1992; Günther et al. 1996; Hoedemaeker et al. 1999; Huang et al. 2007; Koyama et al. 1993; Miled et al. 2007; Musacchio et al. 1996; Nolte et al. 1996; Siegal et al. 1998). However, a structure of an intact PI 3-kinase enzyme has remained elusive. In spite of this, studies over the past 10 years have lead to important insights into how the enzyme is regulated under physiological conditions. This chapter will specifically discuss the regulation of Class IA PI 3-kinase enzymatic activity, focusing on regulatory interactions between the p85 and p110 subunits and the modulation of these interactions by physiological activators and oncogenic mutations. The complex web of signaling downstream from Class IA PI 3-kinases will be discussed in other chapters in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Lee J, Wen L-P, Zhao Z, Ho J, Best A, Kozma R, Lim L (1994) Breakpoint Cluster Region gene product-related domain of n-Chimaerin. J Biol Chem 269:17642–17648

    PubMed  CAS  Google Scholar 

  • Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J et al (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11(9):3469–3479

    PubMed  CAS  Google Scholar 

  • Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103(5):1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Beeton CA, Das P, Waterfield MD, Shepherd PR (1999) The SH3 and BH domains of the p85alpha adapter subunit play a critical role in regulating Class Ia phosphoinositide 3-kinase function. Mol Cell Biol Res Comm 1:153–157

    Article  CAS  Google Scholar 

  • Beeton CA, Chance EM, Foukas LC, Shepherd PR (2000) Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110alpha and p110beta catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem J 350(Pt 2):353–359

    Article  PubMed  CAS  Google Scholar 

  • Bernado P, Garcia de la Torre J, Pons M (2002) Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. J Biomol NMR 23(2):139–150

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Vlahos CJ, Wang Y, Knaus UG, Traynor-Kaplan AE (1996) Rac GTPase interacts specifically with phosphatidylinositol 3- kinase. Biochem J 315:775–779

    PubMed  CAS  Google Scholar 

  • Boldyreff B, Rasmussen TL, Jensen HH, Cloutier A, Beaudet L, Roby P, Issinger OG (2008) Expression and purification of PI3 kinase alpha and development of an ATP depletion and an alphascreen PI3 kinase activity assay. J Biomol Screen 13(10):1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Booker GW, Breeze AL, Downing AK, Panayotou G, Gout I, Waterfield MD, Campbell LD (1992) Structure of an SH2 domain of the p85α subunit of phosphatidylinositol-3 OH-kinase. Nature 358:684–687

    Article  PubMed  CAS  Google Scholar 

  • Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC (2005) Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 25(5):1596–1607

    Article  PubMed  CAS  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64:231–302

    Article  Google Scholar 

  • Carpenter CL, Auger KR, Chanudhuri M, Yoakim M, Schaffhausen B, Shoelson S, Cantley LC (1993) Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268(13):9478–9483

    PubMed  CAS  Google Scholar 

  • Carson JD, Van Aller G, Lehr R, Sinnamon RH, Kirkpatrick RB, Auger KR, Dhanak D, Copeland RA, Gontarek RR, Tummino PJ, Luo L (2008) Effects of oncogenic p110alpha subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase. Biochem J 409(2):519–524

    Article  PubMed  CAS  Google Scholar 

  • CGART (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  • Chamberlain MD, Berry TR, Pastor MC, Anderson DH (2004) The p85alpha subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 279(47):48607–48614

    Article  PubMed  CAS  Google Scholar 

  • Chan TO, Rodeck U, Chan AM, Kimmelman AC, Rittenhouse SE, Panayotou G, Tsichlis PN (2002) Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1(2):181–191

    Article  PubMed  CAS  Google Scholar 

  • Chaussade C, Cho K, Mawson C, Rewcastle GW, Shepherd PR (2009) Functional differences between two classes of oncogenic mutation in the PIK3CA gene. Biochem Biophys Res Commun 381(4):577–581

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip S-C, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biology 1:249–252

    Article  PubMed  CAS  Google Scholar 

  • Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C, Azzolino O, Gonella C, Rubinetto C, Wu H, Dastru W, Martin EL, Silengo L, Altruda F, Turco E, Lanzetti L, Musiani P, Ruckle T, Rommel C, Backer JM, Forni G, Wymann MP, Hirsch E (2008) Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1(36):ra3

    Article  PubMed  CAS  Google Scholar 

  • Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, Mills GB (2001) Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem 276(29):27455–27461

    Article  PubMed  CAS  Google Scholar 

  • Czupalla C, Culo M, Muller EC, Brock C, Reusch HP, Spicher K, Krause E, Nurnberg B (2003) Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 278(13):11536–11545

    Article  PubMed  CAS  Google Scholar 

  • Denley A, Kang S, Karst U, Vogt PK (2008) Oncogenic signaling of class I PI3K isoforms. Oncogene 27(18):2561–2574

    Article  PubMed  CAS  Google Scholar 

  • Deora AA, Win T, Vanhaesebroeck B, Lander HM (1998) A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to Ras by redox stress. J Biol Chem 273(45):29923–29928

    Article  PubMed  CAS  Google Scholar 

  • Dey BR, Furlanetto RW, Nissley SP (1998) Cloning of human p55 gamma, a regulatory subunit of phosphatidylinositol 3-kinase, by a yeast two-hybrid library screen with the insulin-like growth factor-I receptor. Gene 209(1–2):175–183

    Article  PubMed  CAS  Google Scholar 

  • Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G, Fry MJ, Yonezawa K, Kasuga M, Waterfield MD (1994a) PI 3-kinase: Structural and functional analysis of intersubunit interactions. EMBO J 13:511–521

    PubMed  CAS  Google Scholar 

  • Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I, Totty NF, Truong O, Vicendo P, Yonezawa K, Kasuga M, Courtneidge SA, Waterfield MD (1994b) PI 3-kinase is a dual specificity enzyme: Autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13:522–533

    PubMed  CAS  Google Scholar 

  • Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A (1991) Bcr encodes a GTPase-activating protein for p21-rac. Nature 351:400–402

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619

    Article  PubMed  CAS  Google Scholar 

  • Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT (1991) cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 65(1):75–82

    Article  PubMed  CAS  Google Scholar 

  • Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, Williams LT (1992) Distinct Phosphotyrosines on a Growth Factor Receptor Bind to Specific Molecules that Mediate Different Signalling Pathways. Cell 69:413–423

    Article  PubMed  CAS  Google Scholar 

  • Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry (Mosc) 33(19):5984–6003

    Article  CAS  Google Scholar 

  • Foukas LC, Beeton CA, Jensen J, Phillips WA, Shepherd PR (2004) Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Mol Cell Biol 24(3):966–975

    Article  PubMed  CAS  Google Scholar 

  • Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441(7091):366–370

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA (2007) The role of class I phosphoinositide 3-kinase in T-cell function and autoimmunity. Biochem Soc Trans 35(Pt 2):177–180

    PubMed  CAS  Google Scholar 

  • Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT, Kahn CR, Cantley LC (2000) Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet 26(3):379–382

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Aronoff-Spencer E, Backer JM, Gerfen GJ (2003) The structure of the inter-SH2 domain of class IA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling. Proc Natl Acad Sci USA 100(6):3275–3280

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM (2004) The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch Biochem Biophys 432(2):244–251

    Article  PubMed  CAS  Google Scholar 

  • Fushman D, Xu R, Cowburn D (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry (Mosc) 38(32):10225–10230

    Article  CAS  Google Scholar 

  • Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B (2007) Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci USA 104(19):7809–7814

    Article  PubMed  CAS  Google Scholar 

  • Gout I, Dhand R, Panayotou G, Fry MJ, Hiles I, Otsu M, Waterfield MD (1992) Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system. Biochem J 288(Pt 2):395–405

    PubMed  CAS  Google Scholar 

  • Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, Meek S, Smith AJ, Okkenhaug K, Vanhaesebroeck B (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci USA 105(24):8292–8297

    Article  PubMed  CAS  Google Scholar 

  • Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H (1995) Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase. J Cell Biol 129(3):831–842

    Article  PubMed  CAS  Google Scholar 

  • Günther UL, Liu YX, Sanford D, Bachovchin WW, Schaffhausen B (1996) NMR analysis of interactions of a phosphatidylinositol 3′-kinase SH2 domain with phosphotyrosine peptides reveals interdependence of major binding sites. Biochemistry 35:15570–15581

    Article  PubMed  Google Scholar 

  • Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129(5):957–968

    Article  PubMed  CAS  Google Scholar 

  • Gymnopoulos M, Elsliger MA, Vogt PK (2007) Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA 104(13):5569–5574

    Article  PubMed  CAS  Google Scholar 

  • Hale BG, Batty IH, Downes CP, Randall RE (2008) Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation. J Biol Chem 283(3):1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Herbst JJ, Andrews G, Contillo L, Lamphere L, Gardner J, Lienhard GE, Gibbs EM (1994) Potent activation of phosphatidylinositol 3′-kinase by simple phosphotyrosine peptides derived from insulin receptor substrate 1 containing two YMXM motifs for binding SH2 domains. Biochemistry 33:9376–9381

    Article  PubMed  CAS  Google Scholar 

  • Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panayotou G, Ruiz-Larrea F, Thompson A, Totty NF, Hsuan JJ, Courtneidge SA, Parker PJ, Waterfield MD (1992) Phosphatidylinositol 3-Kinase: Structure and Expression of the 110 kd Catalytic Subunit. Cell 70:419–429

    Article  PubMed  CAS  Google Scholar 

  • Hoedemaeker FJ, Siegal G, Roe SM, Driscoll PC, Abrahams JP (1999) Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. J Mol Biol 292(4):763–770

    Article  PubMed  CAS  Google Scholar 

  • Holt KH, Olson AL, Moye-Rowley WS, Pessin JE (1994) Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 14:42–49

    PubMed  CAS  Google Scholar 

  • Horn S, Bergholz U, Jucker M, McCubrey JA, Trumper L, Stocking C, Basecke J (2008) Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells. Oncogene 27(29):4096–4106

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Schlessinger J (1994) Direct association of p110 beta phosphatidylinositol 3-kinase with p85 is mediated by an N-terminal fragment of p110 beta. Mol Cell Biol 14(4):2577–2583

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Mondino A, Skolnik EY, Schlessinger J (1993) Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 13:7677–7688

    PubMed  CAS  Google Scholar 

  • Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT (1995) Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 268(5207):100–102

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318(5857):1744–1748

    Article  PubMed  CAS  Google Scholar 

  • Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, Ohta M, Jazag A, Guleng B, Tateishi K, Asaoka Y, Matsumura M, Kawabe T, Omata M (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65(11):4562–4567

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Clemmons DR (1999) Roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in stimulation of vascular smooth muscle cell migration and deoxyriboncleic acid synthesis by insulin-like growth factor-I. Endocrinology 140(9):4228–4235

    Article  PubMed  CAS  Google Scholar 

  • Inukai K, Anai M, Van Breda E, Hosaka T, Katagiri H, Funaki M, Fukushima Y, Ogihara T, Yazaki Y, Kikuchi YO, Asano T (1996) A novel 55-kDa regulatory subunit for phosphatidylinositol 3-kinase structurally similar to p55PIK Is generated by alternative splicing of the p85alpha gene. J Biol Chem 271(10):5317–5320

    Article  PubMed  CAS  Google Scholar 

  • Inukai K, Funaki M, Nawano M, Katagiri H, Ogihara T, Anai M, Onishi Y, Sakoda H, Ono H, Fukushima Y, Kikuchi M, Oka Y, Asano T (2000) The N-terminal 34 residues of the 55 kDa regulatory subunits of phosphoinositide 3-kinase interact with tubulin. Biochem J 346(Pt 2):483–489

    Article  PubMed  CAS  Google Scholar 

  • Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhari S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman K, Lorenzo M, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker J, de Sauvage FJ, Backer JM, Seshagiri S (2009) Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16(6):463–474

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454(7205):776–779

    PubMed  CAS  Google Scholar 

  • Jimenez C, Jones DR, Rodríguez-Viciana P, Gonzalez-García A, Leonardo E, Wennström S, Von Kobbe C, Toran JL, Borlado LR, Calvo V, Copin SG, Albar JP, Gaspar ML, Diez E, Marcos MAR, Downward J, Martinez C, Mérida I, Carrera AC (1998) Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17:743–753

    Article  PubMed  CAS  Google Scholar 

  • Jimenez C, Hernandez C, Pimentel B, Carrera AC (2002) The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. J Biol Chem 277(44):41556–41562

    Article  PubMed  CAS  Google Scholar 

  • Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W, Feldman RA (2002) Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16(5):894–901

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102(3):802–807

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103(5):1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Kapeller R, Prasad KVS, Janssen O, Hou W, Schaffhausen BS, Rudd CE, Cantley LC (1994) Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 269:1927–1933

    PubMed  CAS  Google Scholar 

  • Klippel A, Escobedo JA, Hu Q, Williams LT (1993) A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo. Mol Cell Biol 13:5560–5566

    PubMed  CAS  Google Scholar 

  • Klippel A, Escobedo JA, Hirano M, Williams LT (1994) The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 14(4):2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16:4117–4127

    PubMed  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747

    Article  PubMed  CAS  Google Scholar 

  • Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4:798–806

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Yu H, Dalgarno DC, Shin TB, Zydowsky LD, Schreiber SL (1993) Structure of the Pl3K SH3 domain and analysis of the SH3 family. Cell 72:945–952

    Article  PubMed  CAS  Google Scholar 

  • Kubo H, Hazeki K, Takasuga S, Hazeki O (2005) Specific role for p85/p110beta in GTP-binding-protein-mediated activation of Akt. Biochem J 392(Pt 3):607–614

    PubMed  CAS  Google Scholar 

  • Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M, Hazeki O, Katada T (1997) Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βgamma subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 272:24252–24256

    Article  PubMed  CAS  Google Scholar 

  • Layton MJ, Harpur AG, Panayotou G, Bastiaens PIH, Waterfield MD (1998) Binding of a diphosphotyrosine-containing peptide that mimics activated platelet-derived growth factor receptor β induces oligomerization of phosphatidylinositol 3-kinase. J Biol Chem 273(50):33379–33385

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  PubMed  CAS  Google Scholar 

  • Maier U, Babich A, Nürnberg B (1999) Roles of non-catalytic subunits in Gβgamma-induced activation of class I phosphoinositide 3-kinase isoforms β and gamma. J Biol Chem 274(41):29311–29317

    Article  PubMed  CAS  Google Scholar 

  • Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM (2009) A frequent kinase domain mutation that changes the interaction between PI3K{alpha} and the membrane. Proc Natl Acad Sci USA 106:16996–17001

    Article  PubMed  CAS  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Mayer BJ, Hanafusa H (1991) Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol Cell Biol 11(3):1607–1613

    PubMed  CAS  Google Scholar 

  • Mayer BJ, Jackson PK, Baltimore D (1991) The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc Natl Acad Sci USA 88(2):627–631

    Article  PubMed  CAS  Google Scholar 

  • Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317(5835):239–242

    Article  PubMed  CAS  Google Scholar 

  • Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87(21):8622–8626

    Article  PubMed  CAS  Google Scholar 

  • Murga C, Fukuhara S, Gutkind JS (2000) A novel role for phosphatidylinositol 3-kinase β in signaling from G protein-coupled receptors to Akt. J Biol Chem 275(16):12069–12073

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Cantley LC, Harrison SC (1996) Crystal structure of the breakpoint cluster region homology domain from phosphoinositide 3-kinase p85α subunit. Proc Natl Acad Sci USA 93:14373–14378

    Article  PubMed  CAS  Google Scholar 

  • Nolte RT, Eck MJ, Schlessinger J, Shoelson SE, Harrison SC (1996) Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nat Struct Biol 3(4):364–374

    Article  PubMed  CAS  Google Scholar 

  • O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE (2000) Alternative modes of binding of proteins with tandem SH2 domains. Protein Sci 9(3):570–579

    Article  PubMed  Google Scholar 

  • Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, Smith AD, Morgan SJ, Courtneidge SA, Parker PJ, Waterfield MD (1991) Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/pp 60c-src complexes and PI3-kinase. Cell 65:91–104

    Article  PubMed  CAS  Google Scholar 

  • Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103(6):931–943

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH, Thomas RJ, Phillips WA (2001) The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61(20):7426–7429

    PubMed  CAS  Google Scholar 

  • Pleiman CM, Hertz WM, Cambier JC (1994) Activation of phosphatidylinositol-3′ kinase by Src-family kinase SH3 binding to the p85 subunit. Science 263:1609–1612

    Article  PubMed  CAS  Google Scholar 

  • Ramjaun AR, Downward J (2007) Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6(23):2902–2905

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15:2442–2451

    PubMed  CAS  Google Scholar 

  • Rommel C, Camps M, Ji H (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7(3):191–201

    Article  PubMed  CAS  Google Scholar 

  • Rordorf-Nikolic T, Van Horn DJ, Chen D, White MF, Backer JM (1995) Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem 270:3662–3666

    Article  PubMed  CAS  Google Scholar 

  • Rubio I, Rodriguez-Viciana P, Downward J, Wetzker R (1997) Interaction of Ras with phosphoinositide 3-kinase gamma. Biochem J 326:891–895

    PubMed  CAS  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    Article  PubMed  CAS  Google Scholar 

  • Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  PubMed  CAS  Google Scholar 

  • Sen KI, Wu H, Backer JM, Gerfen GJ (2010) The Structure of p85ni in Class IA Phosphoinositide 3-Kinase Exhibits Interdomain Disorder. Biochemistry 49:2159–2166

    Article  PubMed  CAS  Google Scholar 

  • Shekar SC, Wu H, Fu Z, Yip SC, Cahill SM, Girvin ME, Backer JM (2005) Mechanism of constitutive PI 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J Biol Chem 280:27850–27855

    Article  PubMed  CAS  Google Scholar 

  • Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170(4):607–618

    Article  PubMed  CAS  Google Scholar 

  • Shin YK, Li Y, Liu Q, Anderson DH, Babiuk LA, Zhou Y (2007a) SH3 binding motif 1 in influenza A virus NS1 protein is essential for PI3K/Akt signaling pathway activation. J Virol 81(23):12730–12739

    Article  PubMed  CAS  Google Scholar 

  • Shin YK, Liu Q, Tikoo SK, Babiuk LA, Zhou Y (2007b) Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol 88(Pt 1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Siegal G, Davis B, Kristensen SM, Sankar A, Linacre J, Stein RC, Panayotou G, Waterfield MD, Driscoll PC (1998) Solution structure of the C-terminal SH2 domain of the p85α regulatory subunit of phosphoinositide 3-kinase. J Mol Biol 276:461–478

    Article  PubMed  CAS  Google Scholar 

  • Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  PubMed  CAS  Google Scholar 

  • Stuart D, Sellers WR (2009) Linking somatic genetic alterations in cancer to therapeutics. Curr Opin Cell Biol 21(2):304–310

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS, Kim C, Vigil D, Haste NM, Yang J, Wu J, Anand GS (2005) Dynamics of signaling by PKA. Biochim Biophys Acta 1754(1–2):25–37

    PubMed  CAS  Google Scholar 

  • Tolias KF, Cantley LC, Carpenter CL (1995) Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270:17656–17659

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Higashi K, Raven C, Welham M, Anderson S, Brennan P, Ward SG, Waterfield MD (1999) Autophosphorylation of p110δ phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J 18(5):1292–1302

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30(4):194–204

    Article  PubMed  CAS  Google Scholar 

  • Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J (1993) Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779–790

    Article  PubMed  CAS  Google Scholar 

  • Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402(6759):313–320

    Article  PubMed  CAS  Google Scholar 

  • Woscholski R, Dhand R, Fry MJ, Waterfield MD, Parker PJ (1994) Biochemical characterization of the free catalytic p110α and the complexed heterodimeric p110α•p85α forms of the mammalian phosphatidylinositol 3-kinase. J Biol Chem 269:25067–25072

    PubMed  CAS  Google Scholar 

  • Wu H, Yan Y, Backer JM (2007) Regulation of class IA PI3Ks. Biochem Soc Trans 35(Pt 2):242–244

    PubMed  CAS  Google Scholar 

  • Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS, Sen KI, Janakiraman V, Seshagiri S, Gerfen GJ, Girvin ME, Backer JM (2009) Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Proc Natl Acad Sci USA 106(48):20258–20263

    Article  PubMed  CAS  Google Scholar 

  • Wymann MP, Bjorklof K, Calvez R, Finan P, Thomast M, Trifilieff A, Barbier M, Altruda F, Hirsch E, Laffargue M (2003) Phosphoinositide 3-kinase gamma: a key modulator in inflammation and allergy. Biochem Soc Trans 31(Pt 1):275–280

    PubMed  CAS  Google Scholar 

  • Xia X, Cheng A, Akinmade D, Hamburger AW (2003) The N-terminal 24 amino acids of the p55 gamma regulatory subunit of phosphoinositide 3-kinase binds Rb and induces cell cycle arrest. Mol Cell Biol 23(5):1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998a) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: Stabilization and inhibition of the p110-alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387

    PubMed  CAS  Google Scholar 

  • Yu JH, Wjasow C, Backer JM (1998b) Regulation of the p85/p110α Phosphatidylinositol 3′-kinase - Distinct roles for the N-terminal and C-terminal SH2 domains. J Biol Chem 273(46):30199–30203

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Smithgall TE, Gmeiner WH (1998) Self-association and backbone dynamics of the hck SH2 domain in the free and phosphopeptide-complexed forms. Biochemistry (Mosc) 37(20):7119–7126

    Article  CAS  Google Scholar 

  • Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105(7):2652–2657

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102(51):18443–18448

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Bagrodia S, Cerione RA (1994) Activation of phosphoinositide 3-kinase by Cdc42Hs binding to p85. J Biol Chem 269:18727–18730

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants GM55692, DK07069, and 1 PO1 CA100324, and grants from American Diabetes Association and the Janey Fund. I thank Dr. Mirvat El-Sibai, Beirut University, for critical reading of the manuscript. I also thank Drs. Mark Girvin, Gary Gerfen, Steve Almo, and George Orr (deceased) at Albert Einstein College of Medicine, and Dr. Roger Williams at the MRC, Cambridge, for collaboration and hours of discussion over the past decade. Finally, I thank all my graduate students and postdocs for their scientific contributions to many of the studies cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Backer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Backer, J.M. (2010). The Regulation of Class IA PI 3-Kinases by Inter-Subunit Interactions. In: Rommel, C., Vanhaesebroeck, B., Vogt, P. (eds) Phosphoinositide 3-kinase in Health and Disease. Current Topics in Microbiology and Immunology, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_52

Download citation

Publish with us

Policies and ethics