Skip to main content

CXCR4 in Clinical Hematology

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 341))

Abstract

Pharmacological manipulation of CXCR4 has proven clinically useful for mobilization of stem and progenitor cells and in several preclinical models of disease. It is a key component in the localization of leukocytes and stem cells. For patients with multiple myeloma and non-Hodgkin’s Lymphoma, treatment with plerixafor, an inhibitor of CXCL12 binding to CXCR4, plus G-CSF mobilizes stem cells for autologous transplantation to a greater degree than the treatment with G-CSF alone, and in some cases when patients could not be mobilized with cytokines, chemotherapy, or the combination. Stem cells from healthy donors mobilized with single agent plerixafor have been used for allogeneic transplantation in acute myelogenous leukemia (AML) patients, although this is still in the early phase of clinical development. Plerixafor is also undergoing evaluation to mobilize tumor cells in patients with AML and chronic lymphocytic leukemia (CLL) to enhance the effectiveness of chemotherapy regimens. Plerixafor’s effect on neutrophils may also restore circulating neutrophil counts to normal levels in patients with chronic neutropenias such as in WHIMs syndrome. Other areas where inhibition of CXCR4 may be useful based upon preclinical or clinical data include peripheral vascular disease, autoimmune diseases such as rheumatoid arthritis, pulmonary inflammation, and HIV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham M, Beider K, Wald H, Weiss ID, Zipori D, Galun E, Nagler A, Eizenberg O, Peled A (2009) The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 23:1378–1388

    PubMed  CAS  Google Scholar 

  • Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243

    PubMed  CAS  Google Scholar 

  • Allen TD, Dexter TM (1984) The essential cells of the hemopoietic microenvironment. Exp Hematol 12:517–521

    PubMed  CAS  Google Scholar 

  • Balabanian K, Lagane B, Pablos J et al (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105:2449–2457

    PubMed  CAS  Google Scholar 

  • Balabanian K, Levoye A, Klemm L (2008) Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 118:1074–1084

    PubMed  CAS  Google Scholar 

  • Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    PubMed  CAS  Google Scholar 

  • Ballen K (2007) Targeting the stem cell niche: squeezing blood from bones. Bone Marrow Transplant 39:655–660

    PubMed  CAS  Google Scholar 

  • Bendall LJ, Daniel A, Kortlepel K et al (1994) Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp Hematol 22:1252–1260

    PubMed  CAS  Google Scholar 

  • Bensinger W, DiPersio JF, McCarty JM (2009) Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 43:181–195

    PubMed  CAS  Google Scholar 

  • Bleul C, Farzan M, Choe H et al (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833

    PubMed  CAS  Google Scholar 

  • Blum A, Childs R, Smith A, Patibandla S, Zalos G, Samsel L, McCoy JP, Calandra G, Csako G, Cannon RO III (2009) Targeted antagonism of CXCR-4 mobilizes progenitor cells under investigation for cardiovascular disease. Cytotherapy 11(8):1016–1019

    PubMed  CAS  Google Scholar 

  • Bradstock KF, Makrynikola V, Bianchi A et al (2000) Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14:882–888

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE (2008) Chemokines in hematopoiesis. Curr Opin Hematol 15:49–58

    PubMed  CAS  Google Scholar 

  • Broxmeyer H, Orschell C, Clapp D, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale D, Srour E (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells, with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    PubMed  CAS  Google Scholar 

  • Burger JA, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23:43–52

    PubMed  CAS  Google Scholar 

  • Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94:3658–3667

    PubMed  CAS  Google Scholar 

  • Burger JA, Tsukada N, Burger M et al (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96:2655–2663

    PubMed  CAS  Google Scholar 

  • Burger M, Hartmann T, Krome M et al (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106:1824–1830

    PubMed  CAS  Google Scholar 

  • Burroughs L, Mielcarek M, Little MT, Bridger G, Macfarland R, Fricker S et al (2005) Durable engraftment of AMD3100-mobilized autologous and allogeneic peripheral-blood mononuclear cells in a canine transplantation model. Blood 106:4002–4008

    PubMed  CAS  Google Scholar 

  • Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Grove B, Badel K, Dye A, Bridger G (2008) AMD 3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 41(4):331–338

    PubMed  CAS  Google Scholar 

  • Capoccia BJ, Shepherd RM, Link DC (2006) G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 108:2438–2445

    PubMed  CAS  Google Scholar 

  • Cashen A, Lopez S, Gao F, Calandra G, MacFarland R, Badel K, DiPersio J (2008) A Phase II study of Plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin Lymphoma. Biol Blood Marrow Transplant 24(11):1253–1261

    Google Scholar 

  • Crazzolara R, Kreczy A, Mann G et al (2001) High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 115:545–553

    PubMed  CAS  Google Scholar 

  • Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975

    PubMed  CAS  Google Scholar 

  • De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587

    PubMed  Google Scholar 

  • De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K et al (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 38:668–674

    PubMed  Google Scholar 

  • De Klerck B, Geboes L, Hatse S, Kelchtermans H, Meyvis Y, Vermeire K et al (2005) Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis. Arthritis Res Ther 7:R1208–R1220

    PubMed  Google Scholar 

  • Devine S, Flomenberg N, Vesole D, Liesveld J, Weisdorf D, Badel K, Calandra G, DiPersio J (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22:1095–1102

    PubMed  CAS  Google Scholar 

  • Devine SM, Vij R, Rettig M, Todt L, McGlauchlen K, Fisher N, Devine H, Link DC, Calandra G, Bridger G, Westervelt P, DiPersio JF (2008) Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 112(4):990–998

    PubMed  CAS  Google Scholar 

  • Dialynas DP, Shao L, Billman GF, Yu J (2001) Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19:443–452

    PubMed  CAS  Google Scholar 

  • DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, Maziarz RT, Hosing C, Früehauf S, Horwitz M, Cooper D, Bridger G, Calandra G, for the 3102 Investigators (2009a) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113:5720–5726

    Google Scholar 

  • DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E, Nademanee A, McCarty J, Bridger G, Calandra G, for the 3101 Investigators (2009b) Phase 3 prospective randomized double blind placebo-controlled trial of plerixafor (AMD3100) plus G-CSF versus placebo plus G-CSF for autologous stem cell mobilization and transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol 28:4767–4773

    Google Scholar 

  • Donahue RE, Jin P, Bonifacino AC, Metzger ME, Ren J, Wang E et al (2009) Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+ cell populations based on global gene and microRNA expression signatures. Blood 114:2530–2541

    PubMed  CAS  Google Scholar 

  • Dorshkind K (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 8:111–137

    PubMed  CAS  Google Scholar 

  • Dugan MJ, Maziarz RT, Bensinger WI, Nademanee A, Liesveld J, Badel K, Dehner C, Gibney C, Bridger G, Calandra G (2010) Safety and preliminary efficacy of plerixafor (Mozobil™) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin’s lymphoma undergoing stem cell mobilization. Bone Marrow Transplant. 45:39–47

    PubMed  CAS  Google Scholar 

  • Flomenberg N, Devine SM, DiPersio JF, Liesveld JL, McCarty JM, Rowley SD, Vesole DH, Badel K, Calandra G (2005a) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106(5):1867–1874

    PubMed  CAS  Google Scholar 

  • Flomenberg N, Comenzo RL, Badel K, Calandra G (2010) Plerixafor (Mozobil®) alone to mobilize hematopoietic stem cells from multiple myeloma patients for autologous transplantation. Biol Blood Marrow Transplant Published on-line January 11, 2010

    Google Scholar 

  • Fowler CJ, Dunn A, Hayes-Lattin B, Hansen K, Hansen L, Lanier K, Nelson V, Kovacsovics T, Leis J, Calandra G, Maziarz RT (2009) Rescue from failed growth factor and/or chemotherapy HSC mobilization with G-CSF and Plerixafor (AMD3100): an institutional experience. Bone Marrow Transplant 43:1–9

    Google Scholar 

  • Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR et al (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72:588–596

    PubMed  CAS  Google Scholar 

  • Fruehauf S, Seeger T, Maier P, Li L, Weinhardt S, Laufs S, Wagner W, Eckstein V, Bridger G, Calandra G, Wenz F, Zeller WJ, Goldschmidt H, Ho A (2006) The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 34:1052–1059

    PubMed  CAS  Google Scholar 

  • Fruehauf S, Ehninger G, Hubel K, Topaly J, Goldschmidt H, Ho AD, Muller S, Moos M, Badel K, Calandra G (2010) Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin’s lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant 45:269–275

    PubMed  CAS  Google Scholar 

  • Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J, Wuchter P, Dillmann F, Eckstein V, Wenz F, Goldschmidt H, Ho AD, Calandra G (2009) A combination of granulocyte colony-stimulating factor (G-CSF) and AMD3100 (plerixafor) mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study with AMD3100. Cytotherapy 11:992–1001

    PubMed  CAS  Google Scholar 

  • Fukuda S, Broxmeyer HE, Pelus LM (2005) Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 105:3117–3126

    PubMed  CAS  Google Scholar 

  • Garrido SM, Appelbaum FR, Willman CL, Banker DE (2001) Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 29:448–457

    PubMed  CAS  Google Scholar 

  • Gazitt Y, Freytes CO, Akay C, Badel K, Calandra G (2007) Improved mobilization of peripheral blood CD34+ cells and dendritic cells by AMD3100 plus granulocyte-colony-stimulating factor in Non-Hodgkin’s lymphoma patients. Stem Cells Dev 16(4):657–666

    PubMed  CAS  Google Scholar 

  • Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276:14153–14160

    PubMed  CAS  Google Scholar 

  • Gorlin R, Gelb B, Diaz G et al (2000) WHIM syndrome: an autosomal dominant disorder. Am J Med Genet 91:368–376

    PubMed  CAS  Google Scholar 

  • Gulino A (2003) WHIM Syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol 3:443–450

    PubMed  CAS  Google Scholar 

  • Gulino A, Moratto D, Sozzani S et al (2004) Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 104:444–452

    PubMed  CAS  Google Scholar 

  • Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527:255–262

    PubMed  CAS  Google Scholar 

  • Hendrix C, Collier A, Lederman M, Schols D, Pollard R, Brown S, Jackson JB, Coombs R, Glesby M, Flexner C, Bridger G, Badel K, MacFarland R, Henson G, Calandra G (2004) Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37(2):1253–1262

    PubMed  CAS  Google Scholar 

  • Hernandez P, Gorlin R, Lukens J (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70–73

    PubMed  CAS  Google Scholar 

  • Hess DA, Bonde J, Craft TC, Wirthlin L, Hohm S, Lahey R, Todt LM, Dipersio JF, Devine SM, Nolta JA (2007) Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor. Biol Blood Marrow Transplant 13:398–411

    PubMed  CAS  Google Scholar 

  • Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455

    PubMed  CAS  Google Scholar 

  • Holtan SG, Porrata LF, Micallef IN et al (2007) AMD3100 affects autograft lymphocyte collection and progression-free survival after autologous stem cell transplantation in non-Hodgkin lymphoma. Clin Lymphoma Myeloma 7:315–318

    PubMed  CAS  Google Scholar 

  • Hubel K, Liles C, Broxmeyer HE, Rodger E, Wood B, Cooper S, Hangoc G, MacFarland R, Bridger GJ, Henson G, Calandra G, Dale DC (2004) Leukocytosis and mobilization of CD34+ hematopoeitic progenitor cells by AMD3100, a CXCR4 antagonist. Support Cancer Ther 1(3):165–172

    PubMed  Google Scholar 

  • Ishibe N, Albitar M, Jilani IB et al (2002) CXCR4 expression is associated with survival in familial chronic lymphocytic leukemia, but CD38 expression is not. Blood 100:1100–1101

    PubMed  CAS  Google Scholar 

  • Jiao C, Fricker S, Schatteman GC (2006) The chemokine (C-X-C motif) receptor 4 inhibitor AMD3100 accelerates blood flow restoration in diabetic mice. Diabetologia 49:2786–2789

    PubMed  CAS  Google Scholar 

  • Juarez J, Bendall L (2004) SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol 19:299–309

    PubMed  CAS  Google Scholar 

  • Juarez J, Dela Pena A, Baraz R et al (2007) CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 21:1249–1257

    PubMed  CAS  Google Scholar 

  • Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    PubMed  CAS  Google Scholar 

  • Kawai T, Malech H (2009) WHIM Syndrome: congenital immune deficiency disease. Curr Opin Hematol 16:20–26

    PubMed  CAS  Google Scholar 

  • Kawai T, Choi U, Whiting-Theobald N et al (2005) Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 33:460–468

    PubMed  CAS  Google Scholar 

  • Kawai T, Choi U, Cardwell L et al (2007) WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus–truncated CXCR4. Blood 109:78–84

    PubMed  CAS  Google Scholar 

  • Koller MR, Oxender M, Jensen TC et al (1999) Direct contact between CD34+lin- cells and stroma induces a soluble activity that specifically increases primitive hematopoietic cell production. Exp Hematol 27:734–741

    PubMed  CAS  Google Scholar 

  • Konoplev S, Rassidakis GZ, Estey E et al (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 109:1152–1156

    PubMed  CAS  Google Scholar 

  • Konopleva M, Konoplev S, Hu W et al (2002) Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16:1713–1724

    PubMed  CAS  Google Scholar 

  • Konopleva M, Tabe Y, Zeng Z et al (2009) Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 12:103–113

    PubMed  CAS  Google Scholar 

  • Kumagai M, Manabe A, Pui CH et al (1996) Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest 97:755–760

    PubMed  CAS  Google Scholar 

  • Lagane L, Chow K, Balabanian K et al (2008) CXCR4 dimerization and β-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 112:34–44

    PubMed  CAS  Google Scholar 

  • Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    PubMed  CAS  Google Scholar 

  • Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910

    PubMed  CAS  Google Scholar 

  • Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S et al (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107:3772–3778

    PubMed  CAS  Google Scholar 

  • Lemery SJ, Hsieh MM, Smith A, Rao S, Khuu HM, Donohue T, Karpovich JM, Cook L, Goodwin R, Boss C, Calandra G, Geller N, Tisdale J, Childs R (2007) A pilot study evaluating the CD34+ cell mobilizing activity and adverse events associated with escalating doses of AMD3100 in health volunteers. ASH Annual Meeting Abstracts 110:3278

    Google Scholar 

  • Levesque JP, Winkler IG (2008) Mobilization of hematopoietic stem cells: state of the art. Curr Opin Organ Transplant 13:53–58

    PubMed  Google Scholar 

  • Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger G, Henson G, Calandra G, Dale D (2003) Mobilization of hematopietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730

    PubMed  CAS  Google Scholar 

  • Liles W, Rodger E, Broxmeyer H, Dehner C, Badel K, Calandra G, Christensen J, Wood B, Price T, Dale D (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 45:295–300

    PubMed  CAS  Google Scholar 

  • Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ (2002) AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 160:1353–1360

    PubMed  CAS  Google Scholar 

  • Manabe A, Coustan-Smith E, Behm FG et al (1992) Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 79:2370–2377

    PubMed  CAS  Google Scholar 

  • Martin C, Bridger GJ, Rankin SM (2006) Structural analogues of AMD3100 mobilise haematopoietic progenitor cells from bone marrow in vivo according to their ability to inhibit CXCL12 binding to CXCR4 in vitro. Br J Haematol 134:326–329

    PubMed  CAS  Google Scholar 

  • Matthys P, Hatse S, Vermeire K, Wuyts A, Bridger G, Henson GW et al (2001) AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 167:4686–4689

    PubMed  CAS  Google Scholar 

  • Micallef IN, Stiff PJ, DiPersio JF, Maziarz RT, McCarty JM, Bridger G, Calandra G (2009) Successful stem cell re-mobilization using plerixafor (Mozobil) plus G-CSF in patients with non-Hodgkin's lymphoma (NHL): results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 15:1578–1586

    PubMed  CAS  Google Scholar 

  • Milojkovic D, Devereux S, Westwood NB et al (2004) Antiapoptotic microenvironment of acute myeloid leukemia. J Immunol 173:6745–6752

    PubMed  CAS  Google Scholar 

  • Mohle R, Failenschmid C, Bautz F, Kanz L (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13:1954–1959

    PubMed  CAS  Google Scholar 

  • Moyle G, DeJesus E, Boffito M, Wong RS, Gibney C, Bade K, MacFarland R, Calandra G, Bridger G, Becker S, for the X4 Antagonist Concept Trial (XACT) study team (2009) Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV-1 virus. Clin Infect Dis 48(6):798–805

    Google Scholar 

  • Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 177:175–184

    PubMed  CAS  Google Scholar 

  • Nagasawa T, Tachibana K, Kishimoto T (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 10:179–185

    PubMed  CAS  Google Scholar 

  • Nervi B, Link DC, DiPersio JF (2006) Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 99:690–705

    PubMed  CAS  Google Scholar 

  • Nervi B, Ramirez P, Rettig M et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214

    PubMed  CAS  Google Scholar 

  • North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    PubMed  CAS  Google Scholar 

  • Panayiotidis P, Jones D, Ganeshaguru K et al (1996) Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92:97–103

    PubMed  CAS  Google Scholar 

  • Papayannopoulou T (2000) Mechanisms of stem-/progenitor-cell mobilization: the anti-VLA-4 paradigm. Semin Hematol 37:11–18

    PubMed  CAS  Google Scholar 

  • Papayannopoulou T (2004) Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103:1580–1585

    PubMed  CAS  Google Scholar 

  • Paul S, Mancuso P, Rabascio C, Gobbi A, Capillo M, Pruneri G, Martinelli G, Fricker S, Bridger G, Bertolini F (2002) In vitro and preclinical activity of the novel AMD3100 CXCR4 antagonist in lymphoma models. 44th Annual Meeting of the American Society of Hematology: Blood

    Google Scholar 

  • Pelus LM (2008) Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol 15:285–292

    PubMed  Google Scholar 

  • Pelus LM, Fukuda S (2006) Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 34:1010–1020

    PubMed  CAS  Google Scholar 

  • Redjal N, Chan JA, Segal RA, Kung AL (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12:6765–6771

    PubMed  CAS  Google Scholar 

  • Rettig MP, Shannon WD, Richey J, Holt M, McFarland K, Lopez S, Gabriel J, DiPersio JF (2008) Characterization of human CD34+ hematopoietic stem cells following administration of G-CSF or plerixafor. ASH Abstract 3476

    Google Scholar 

  • Rombouts EJ, Pavic B, Löwenberg B, Ploemacher RE (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104:550–557

    PubMed  CAS  Google Scholar 

  • Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K et al (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100:13513–13518

    PubMed  CAS  Google Scholar 

  • Schols D, Este JA, Henson G, De Clercq E (1997) Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res 35:147–156

    PubMed  CAS  Google Scholar 

  • Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S et al (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

    PubMed  CAS  Google Scholar 

  • Semerad CL, Christopher MJ, Liu F, Brenton S, Simmons PJ, Winkler I, Leveneque J-P, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    PubMed  CAS  Google Scholar 

  • Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF et al (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 29:1439–1447

    PubMed  CAS  Google Scholar 

  • Shepherd RM, Capoccia BJ, Devine SM, Dipersio J, Trinkaus KM, Ingram D et al (2006) Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood 108:3662–3667

    PubMed  CAS  Google Scholar 

  • Spiegel A, Kalinkovich A, Shivtiel S, Kollet O, Lapidot T (2008) Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 3:484–492

    PubMed  CAS  Google Scholar 

  • Spoo AC, Lübbert M, Wierda WG, Burger JA (2007) CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 109:786–791

    PubMed  CAS  Google Scholar 

  • Stewart DA, Smith C, MacFarland R, Calandra G (2009) Pharmacokinetics and pharmacodynamics of plerixafor in patients with non-Hodgkin’s lymphomas and multiple myeloma. Biol Blood Marrow Transplant 15:39–46

    PubMed  CAS  Google Scholar 

  • Stiff P, Micallef I, McCarthy P, Magalhaes-Silverman M, Weisdorf D, Territo M, Badel K, Calandra G (2009) Treatment with plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: implications for the hard to mobilize patients. Biol Blood Marrow Transplant 15:249–256

    PubMed  CAS  Google Scholar 

  • Stone N, Dunaway S, Flexner C, Tierney C, Calandra G, Becker S, Cao Y, Wiggins I, Conley J, MacFarland R, Park J, Lalama C, Snyder S, Kallungal B, Klingman K, Hendrix C (2007) Multiple dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects (ACTG A5191). Antimicrob Agents Chemother 51(7):2351–2358

    PubMed  CAS  Google Scholar 

  • Tavor S, Petit I, Porozov S et al (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 64:2817–2824

    PubMed  CAS  Google Scholar 

  • Tricot G, Cottler-Fox MH, Calandra G (2010) Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers including assessment of tumor cell mobilization. Bone Marrow Transplant 45:63–68

    PubMed  CAS  Google Scholar 

  • Voermans C, van Heese WP, de Jong I et al (2002) Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 16:650–657

    PubMed  CAS  Google Scholar 

  • Zeng Z, Shi Y, Samudio I et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–6224

    PubMed  CAS  Google Scholar 

  • Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A et al (2002) A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 277:24515–24521

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Calandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calandra, G., Bridger, G., Fricker, S. (2010). CXCR4 in Clinical Hematology. In: Bruserud, O. (eds) The Chemokine System in Experimental and Clinical Hematology. Current Topics in Microbiology and Immunology, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_26

Download citation

Publish with us

Policies and ethics