Skip to main content

Homing in on Acute Graft vs. Host Disease: Tissue-Specific T Regulatory and Th17 Cells

  • Chapter
  • First Online:
The Chemokine System in Experimental and Clinical Hematology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 341))

Abstract

Acute graft vs. host disease (aGVHD) is a major limitation of hematopoietic stem cell transplantation (HSCT), and it causes significant morbidity and mortality for this patient population. This immune-mediated injury occurs unpredictably and is caused by donor-derived T cells reacting to recipient alloantigens. Although donor Th1 cells play a critical role in aGVHD generation, numerous arms of both the innate and the adaptive immune systems along with determinants of lymphocyte trafficking are likely involved in the multifaceted cascade of immunological events that culminates in clinical aGVHD. T regulatory and Th17 cells are T cell subsets distinct from Th1 cells that are likely involved with aGVHD. Regulatory T cells (Tregs) have been implicated in the prevention of aGVHD in both mouse and man, while Th17 cells may modulate early inflammatory responses associated with aGVHD, especially those involving the skin and the lungs. Interestingly, these two lymphocyte subsets appear to be reciprocally regulated in part through retinoic acid, through cytokines such as IL-6, and via interactions with dendritic cells. Another area under tight regulation appears to be the homing of lymphocytes to lymph nodes, skin, and gut. Adhesion molecules including chemokine receptors, selectins, and integrins may identify specific T cell subsets with unique migratory functional properties during HSCT. Controlling the migration patterns of Th17 cells and Tregs represents a potential therapeutic target. A major goal of HSCT research will be to develop approaches to pharmacologically manipulate T cell subsets in vivo or to select, expand, and infuse T cell subsets that will maximize the targeted graft vs. tumor effect while minimizing the potentially fatal side effects of aGVHD. A better understanding of Tregs and their tissue specificity should lead to improvement in the success of HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aGVHD:

Acute graft vs. host disease

ATG:

Antithymocyte globulin

ATRA:

All-trans-retinoic acid

CCL:

Chemokine ligand

CCRs:

Chemokine receptors

cGVHD:

Chronic graft vs. host disease

CLA:

Cutaneous lymphocyte antigen

CTLA4:

Cytotoxic T-lymphocyte associated antigen 4

E-selectin:

Endothelial-cell selectin

Foxp3:

Forkhead box protein P3

GITR:

Glucocorticoid tumor necrosis factor receptor

GVT:

Graft vs. tumor effect

HEVs:

High endothelial venules

HLA:

Human leukocyte antigen

HSCT:

Hematopoietic stem cell transplantation

IDO:

Indoleamine 2,3-dioxygenase

IL:

Interleukin

IPEX:

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

MADCAM1:

Mucosal vascular address in cell-adhesion molecule 1

MRD:

Matched related donor

P-selectin:

Platelet selectin

RIC:

Reduced intensity chemotherapy

ROR:

Retinoid-related orphan receptor

Tregs:

Regulatory T cells

URD:

Unrelated donor

References

  • Acosta-Rodriguez EV et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639–646

    PubMed  CAS  Google Scholar 

  • Agace WW (2006) Tissue-tropic effector T cells: generation and targeting opportunities. Nat Rev Immunol 6(9):682–692

    PubMed  CAS  Google Scholar 

  • Allen RD, Staley TA, Sidman CL (1993) Differential cytokine expression in acute and chronic murine graft-versus-host-disease. Eur J Immunol 23(2):333–337

    PubMed  CAS  Google Scholar 

  • Alousi AM et al (2009) Etanercept, mycophenolate, denileukin, or pentostatin plus corticosteroids for acute graft-versus-host disease: a randomized phase 2 trial from the Blood and Marrow Transplant Clinical Trials Network. Blood 114(3):511–517

    PubMed  CAS  Google Scholar 

  • Arai S, Vogelsang GB (2000) Management of graft-versus-host disease. Blood Rev 14(4):190–204

    PubMed  CAS  Google Scholar 

  • Arbones ML et al (1994) Lymphocyte homing and leukocyte rolling and migration are impaired in l-selectin-deficient mice. Immunity 1(4):247–260

    PubMed  CAS  Google Scholar 

  • Aujla SJ et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14(3):275–281

    PubMed  CAS  Google Scholar 

  • Beatty PG et al (1985) Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 313(13):765–771

    PubMed  CAS  Google Scholar 

  • Beatty PG et al (1991) Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation 51(2):443–447

    PubMed  CAS  Google Scholar 

  • Beilhack A et al (2005) In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106(3):1113–1122

    PubMed  CAS  Google Scholar 

  • Beilhack A et al (2008) Prevention of acute graft-versus-host disease by blocking T-cell entry to secondary lymphoid organs. Blood 111(5):2919–2928

    PubMed  CAS  Google Scholar 

  • Belkaid Y et al (2002) CD4+ CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420(6915):502–507

    PubMed  CAS  Google Scholar 

  • Berg EL et al (1991) The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol 114(2):343–349

    PubMed  CAS  Google Scholar 

  • Berlin C et al (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74(1):185–195

    PubMed  CAS  Google Scholar 

  • Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    PubMed  CAS  Google Scholar 

  • Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8(4):345–350

    PubMed  CAS  Google Scholar 

  • Carlson MJ et al (2009) In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood 113(6):1365–1374

    PubMed  CAS  Google Scholar 

  • Chen W et al (2003) Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886

    PubMed  CAS  Google Scholar 

  • Chen X et al (2009) Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood 114(4):891–900

    PubMed  CAS  Google Scholar 

  • Chung DJ et al (2009) Indoleamine 2, 3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114(3):555–563

    PubMed  CAS  Google Scholar 

  • Cohen JL et al (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 196(3):401–406

    PubMed  CAS  Google Scholar 

  • Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    PubMed  CAS  Google Scholar 

  • Curti A et al (2009) The role of indoleamine 2, 3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 113(11):2394–2401

    PubMed  CAS  Google Scholar 

  • Deaglio S et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265

    PubMed  CAS  Google Scholar 

  • Dominitzki S et al (2007) Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+ CD25 T cells. J Immunol 179(4):2041–2045

    PubMed  CAS  Google Scholar 

  • Dudda JC et al (2005) Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur J Immunol 35(4):1056–1065

    PubMed  CAS  Google Scholar 

  • Edinger M et al (2003) CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9(9):1144–1150

    PubMed  CAS  Google Scholar 

  • Elias KM et al (2008) Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111(3):1013–1020

    PubMed  CAS  Google Scholar 

  • Engelhardt B et al (2008) Circulating gut- or skin-homing regulatory T cells (tregs) predict whether acute graft-versus-host disease (aGVHD) occurs in gut or skin following allogeneic stem cell transplantation (ASCT). Blood 112(11):264a

    Google Scholar 

  • Ermann J et al (2005) Only the CD62L+ subpopulation of CD4+ CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105(5):2220–2226

    PubMed  CAS  Google Scholar 

  • Ferrara JL, Levy R, Chao NJ (1999) Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant 5(6):347–356

    PubMed  CAS  Google Scholar 

  • Filipovich AH et al (2005) National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 11(12):945–956

    PubMed  Google Scholar 

  • Fondi C et al (2009) Increase in FOXP3+ regulatory T cells in GVHD skin biopsies is associated with lower disease severity and treatment response. Biol Blood Marrow Transplant 15(8):938–947

    PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    PubMed  CAS  Google Scholar 

  • Gavin MA et al (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103(17):6659–6664

    PubMed  CAS  Google Scholar 

  • Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18(5):723–737

    PubMed  CAS  Google Scholar 

  • Graubert TA et al (1997) Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J Clin Invest 100(4):904–911

    PubMed  CAS  Google Scholar 

  • Gunn MD et al (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95(1):258–263

    PubMed  CAS  Google Scholar 

  • Hanash AM, Levy RB (2005) Donor CD4+ CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 105(4):1828–1836

    PubMed  CAS  Google Scholar 

  • Hoffmann P et al (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196(3):389–399

    PubMed  CAS  Google Scholar 

  • Hoffmann P et al (2004) Large-scale in vivo expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104(3):895–903

    PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    PubMed  CAS  Google Scholar 

  • Huehn J, Hamann A (2005) Homing to suppress: address codes for Treg migration. Trends Immunol 26(12):632–636

    PubMed  CAS  Google Scholar 

  • Huehn J et al (2004) Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 199(3):303–313

    PubMed  CAS  Google Scholar 

  • Ivanov II, Zhou L, Littman DR (2007) Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19(6):409–417

    PubMed  CAS  Google Scholar 

  • Iwata M et al (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4):527–538

    PubMed  CAS  Google Scholar 

  • Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271

    PubMed  CAS  Google Scholar 

  • Jasperson LK et al (2009) Inducing the tryptophan catabolic pathway, indoleamine 2, 3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood 114(24):5062–5070

    PubMed  Google Scholar 

  • Jones SC, Murphy GF, Korngold R (2003) Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant 9(4):243–256

    PubMed  Google Scholar 

  • Kang SG et al (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179(6):3724–3733

    PubMed  CAS  Google Scholar 

  • Kappel LW et al (2009) IL-17 contributes to CD4-mediated graft-versus-host disease. Blood 113(4):945–952

    PubMed  CAS  Google Scholar 

  • Kim CH (2006) Migration and function of FoxP3+ regulatory T cells in the hematolymphoid system. Exp Hematol 34(8):1033–1040

    PubMed  CAS  Google Scholar 

  • Kim CH (2008) Regulation of FoxP3 regulatory T cells and Th17 cells by retinoids. Clin Dev Immunol 2008:416910

    PubMed  Google Scholar 

  • Kim CH (2009) Migration and function of Th17 cells. Inflamm Allergy Drug Targets 8(3):221–228

    PubMed  CAS  Google Scholar 

  • Kim YM et al (2003) Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720. J Clin Invest 111(5):659–669

    PubMed  CAS  Google Scholar 

  • Kim TD et al (2008) Organ-derived dendritic cells have differential effects on alloreactive T cells. Blood 111(5):2929–2940

    PubMed  CAS  Google Scholar 

  • Lee JH, Kang SG, Kim CH (2007) FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J Immunol 178(1):301–311

    PubMed  CAS  Google Scholar 

  • Leeuwenberg JF et al (1988) Effects of tumor necrosis factor on the interferon-gamma-induced major histocompatibility complex class II antigen expression by human endothelial cells. Eur J Immunol 18(9):1469–1472

    PubMed  CAS  Google Scholar 

  • Lim HW, Broxmeyer HE, Kim CH (2006) Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol 177(2):840–851

    PubMed  CAS  Google Scholar 

  • Lim HW et al (2008) Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol 180(1):122–129

    PubMed  CAS  Google Scholar 

  • Liu W et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711

    PubMed  CAS  Google Scholar 

  • Lowsky R et al (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353(13):1321–1331

    PubMed  CAS  Google Scholar 

  • Mangan PR et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441(7090):231–234

    PubMed  CAS  Google Scholar 

  • Martin PJ et al (1990) A retrospective analysis of therapy for acute graft-versus-host disease: initial treatment. Blood 76(8):1464–1472

    PubMed  CAS  Google Scholar 

  • Martin PJ et al (1991) A retrospective analysis of therapy for acute graft-versus-host disease: secondary treatment. Blood 77(8):1821–1828

    PubMed  CAS  Google Scholar 

  • Mielke S et al (2007) Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood 110(5):1689–1697

    PubMed  CAS  Google Scholar 

  • Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361(9):888–898

    PubMed  CAS  Google Scholar 

  • Miura Y et al (2004) Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 104(7):2187–2193

    PubMed  CAS  Google Scholar 

  • Mora JR et al (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 201(2):303–316

    PubMed  CAS  Google Scholar 

  • Morgan ME et al (2005) Expression of FOXP3 mRNA is not confined to CD4+ CD25+T regulatory cells in humans. Hum Immunol 66(1):13–20

    PubMed  CAS  Google Scholar 

  • Mucida D et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260

    PubMed  CAS  Google Scholar 

  • Murai M et al (2003) Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat Immunol 4(2):154–160

    PubMed  CAS  Google Scholar 

  • Nadal E et al (2007) Increased frequencies of CD4(+)CD25(high) T(regs) correlate with disease relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia 21(3):472–479

    PubMed  CAS  Google Scholar 

  • Nash RA et al (1992) Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood 80(7):1838–1845

    PubMed  CAS  Google Scholar 

  • Nguyen VH et al (2007) In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood 109(6):2649–2656

    PubMed  CAS  Google Scholar 

  • Norton J, Sloane JP (1991) ICAM-1 expression on epidermal keratinocytes in cutaneous graft-versus-host disease. Transplantation 51(6):1203–1206

    PubMed  CAS  Google Scholar 

  • Oswald-Richter K et al (2004) HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2(7):E198

    PubMed  Google Scholar 

  • Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467

    PubMed  CAS  Google Scholar 

  • Pabst C et al (2007) The graft content of donor T cells expressing gamma delta TCR+ and CD4+ foxp3+ predicts the risk of acute graft versus host disease after transplantation of allogeneic peripheral blood stem cells from unrelated donors. Clin Cancer Res 13(10):2916–2922

    PubMed  CAS  Google Scholar 

  • Pandiyan P et al (2007) CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362

    PubMed  CAS  Google Scholar 

  • Picker LJ et al (1993) Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J Immunol 50(3):1122–1136

    Google Scholar 

  • Piguet PF et al (1987) Tumor necrosis factor/cachectin is an effector of skin and gut lesions of the acute phase of graft-vs.-host disease. J Exp Med 166(5):1280–1289

    PubMed  CAS  Google Scholar 

  • Przepiorka D et al (2001) Chronic graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 98(6):1695–1700

    PubMed  CAS  Google Scholar 

  • Qin HY et al (2006) A novel mechanism of regulatory T cell-mediated down-regulation of autoimmunity. Int Immunol 18(7):1001–1015

    PubMed  CAS  Google Scholar 

  • Reddy P (2003) Pathophysiology of acute graft-versus-host disease. Hematol Oncol 21(4):149–161

    PubMed  Google Scholar 

  • Rezvani K et al (2006) High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 108(4):1291–1297

    PubMed  CAS  Google Scholar 

  • Rieger K et al (2006) Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood 107(4):1717–1723

    PubMed  CAS  Google Scholar 

  • Sackstein R (2006) A revision of Billingham's tenets: the central role of lymphocyte migration in acute graft-versus-host disease. Biol Blood Marrow Transplant 12(1 Suppl 1):2–8

    PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  • Sanchez J et al (2004) Kinetic of regulatory CD25high and activated CD134+ (OX40) T lymphocytes during acute and chronic graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 126(5):697–703

    PubMed  Google Scholar 

  • Sato W, Aranami T, Yamamura T (2007) Cutting edge: human Th17 cells are identified as bearing CCR2+CCR5- phenotype. J Immunol 178(12):7525–7529

    PubMed  CAS  Google Scholar 

  • Schambach F et al (2007) Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 37(9):2396–2399

    PubMed  CAS  Google Scholar 

  • Seddiki N et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700

    PubMed  CAS  Google Scholar 

  • Seidel MG et al (2006) Expression of the putatively regulatory T-cell marker FOXP3 by CD4(+)CD25+ T cells after pediatric hematopoietic stem cell transplantation. Haematologica 91(4):566–569

    PubMed  CAS  Google Scholar 

  • Sharma MD et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111

    PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2(6):389–400

    PubMed  CAS  Google Scholar 

  • Shimizu J et al (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142

    PubMed  CAS  Google Scholar 

  • Shlomchik WD (2007) Graft-versus-host disease. Nat Rev Immunol 7(5):340–352

    PubMed  CAS  Google Scholar 

  • Shlomchik WD et al (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285(5426):412–415

    PubMed  CAS  Google Scholar 

  • Shresta S et al (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10(5):581–587

    PubMed  CAS  Google Scholar 

  • Siewert C et al (2007) Induction of organ-selective CD4+ regulatory T cell homing. Eur J Immunol 37(4):978–989

    PubMed  CAS  Google Scholar 

  • Sigmundsdottir H, Butcher EC (2008) Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol 9(9):981–987

    PubMed  CAS  Google Scholar 

  • Sigmundsdottir H et al (2007) DCs metabolize sunlight-induced vitamin D3 to `program' T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8(3):285–293

    PubMed  CAS  Google Scholar 

  • Singh SP et al (2008) Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol 180(1):214–221

    PubMed  CAS  Google Scholar 

  • Socie G, Blazar BR (2009) Acute graft-versus-host disease: from the bench to the bedside. Blood 114(20):4327–4336

    PubMed  CAS  Google Scholar 

  • Stanzani M et al (2004) CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood 103(3):1140–1146

    PubMed  CAS  Google Scholar 

  • Szanya V et al (2002) The subpopulation of CD4+ CD25+ splenocytes that delays adoptive transfer of diabetes expresses l-selectin and high levels of CCR7. J Immunol 169(5):2461–2465

    PubMed  CAS  Google Scholar 

  • Takahashi T et al (1998) Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    PubMed  CAS  Google Scholar 

  • Takahashi T et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–244

    PubMed  CAS  Google Scholar 

  • Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193(11):1311–1318

    PubMed  CAS  Google Scholar 

  • Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99(10):3493–3499

    PubMed  CAS  Google Scholar 

  • Taylor PA et al (2004) l-Selectin(hi) but not the l-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104(12):3804–3812

    PubMed  CAS  Google Scholar 

  • Thornhill MH et al (1991) Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and – independent binding mechanisms. J Immunol 146(2):592–598

    PubMed  CAS  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vivo by inhibiting interleukin 2 production. J Exp Med 188(2):287–296

    PubMed  CAS  Google Scholar 

  • Trenado A et al (2003) Recipient-type specific CD4+ CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 112(11):1688–1696

    PubMed  CAS  Google Scholar 

  • Varona R et al (2006) CCR6 regulates the function of alloreactive and regulatory CD4+ T cells during acute graft-versus-host disease. Leuk Lymphoma 47(8):1469–1476

    PubMed  CAS  Google Scholar 

  • Via CS, Finkelman FD (1993) Critical role of interleukin-2 in the development of acute graft-versus-host disease. Int Immunol 5(6):565–572

    PubMed  CAS  Google Scholar 

  • Via CS et al (1996) A major role for the Fas pathway in acute graft-versus-host disease. J Immunol 157(12):5387–5393

    PubMed  CAS  Google Scholar 

  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    PubMed  CAS  Google Scholar 

  • von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3(11):867–878

    Google Scholar 

  • Wang J et al (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37(1):129–138

    PubMed  CAS  Google Scholar 

  • Wang R et al (2008) Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS One 3(7):e2705

    PubMed  Google Scholar 

  • Wei S, Kryczek I, Zou W (2006) Regulatory T-cell compartmentalization and trafficking. Blood 108(2):426–431

    PubMed  CAS  Google Scholar 

  • Weisdorf D et al (1991) Risk factors for acute graft-versus-host disease in histocompatible donor bone marrow transplantation. Transplantation 51(6):1197–1203

    PubMed  CAS  Google Scholar 

  • Welniak LA, Blazar BR, Murphy WJ (2007) Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 25:139–170

    PubMed  CAS  Google Scholar 

  • Wolf D et al (2007) Regulatory T-cells in the graft and the risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation 83(8):1107–1113

    PubMed  Google Scholar 

  • Wysocki CA et al (2005a) Leukocyte migration and graft-versus-host disease. Blood 105(11):4191–4199

    PubMed  CAS  Google Scholar 

  • Wysocki CA et al (2005b) Critical role for CCR5 in the function of donor CD4+ CD25+ regulatory T cells during acute graft-versus-host disease. Blood 106(9):3300–3307

    PubMed  CAS  Google Scholar 

  • Xiao S et al (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181(4):2277–2284

    PubMed  CAS  Google Scholar 

  • Xu H et al (2008) IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett 121(1):1–6

    PubMed  CAS  Google Scholar 

  • Xun CQ et al (1994) Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83(8):2360–2367

    PubMed  CAS  Google Scholar 

  • Yamaguchi T et al (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27(1):145–159

    PubMed  CAS  Google Scholar 

  • Yi T et al (2008) Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft-versus-host disease. Blood 112(5):2101–2110

    PubMed  CAS  Google Scholar 

  • Yi T et al (2009) Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease. Blood 114(14):3101–3112

    PubMed  CAS  Google Scholar 

  • Zhang Y et al (2005) Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11(12):1299–1305

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health/National Cancer Institute Grant K12 CA090625, the American Cancer Society–Institutional Research Grant (No. IRG-58-009-48) and the Sartain-Lanier Family Foundation. JEC is supported by a Burroughs Wellcome Clinical Scientist Award in Translational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Crowe Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelhardt, B.G., Crowe, J.E. (2010). Homing in on Acute Graft vs. Host Disease: Tissue-Specific T Regulatory and Th17 Cells. In: Bruserud, O. (eds) The Chemokine System in Experimental and Clinical Hematology. Current Topics in Microbiology and Immunology, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_24

Download citation

Publish with us

Policies and ethics