Skip to main content

Role of Chemokines in the Biology of Natural Killer Cells

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 341))

Abstract

Natural killer (NK) cells represent a major subpopulation of lymphocytes. These cells have effector functions as they recognize and kill transformed cells as well as microbially infected cells. In addition, alloreactive NK cells have been successfully used to treat patients with acute myeloid leukemia and other hematological malignancies. NK cells are also endowed with immunoregulatory functions since they secrete cytokines such as IFN-γ, which favor the development of T helper 1 (Th1) cells, and chemokines such as CCL3/MIP-1α and CCL4/MIP-1β, which recruit various inflammatory cells into sites of inflammation. In human blood, NK cells are divided into CD56bright CD16dim and CD56dim CD16bright subsets. These subsets have different phenotypic expression and may have different functions; the former subset is more immunoregulatory and the latter is more cytolytic. The CD56brightCD16dim NK cells home into tissues such as the peripheral lymph nodes (LNs) under physiological conditions because they express the LN homing receptor CCR7 and they respond to CCL19/MIP-3β and CCL21/SLC chemokines. They also distribute into adenoid tissues or decidual uterus following the CXCR3/CXCL10 or CXCR4/CXCL12 axis. On the other hand, both NK cell subsets migrate into inflammatory sites, with more CD56dimCD16bright NK cells distributing into inflamed liver and lungs. CCR5/CCL5 axis plays an important role in the accumulation of NK cells in virally infected sites as well as during parasitic infections. CD56brightCD16dim cells also migrate into autoimmune sites such as inflamed synovial fluids in patients having rheumatoid arthritis facilitated by the CCR5/CCL3/CCL4/CCL5 axis, whereas they distribute into inflamed brains aided by the CX3CR1/CX3CL1 axis. On the other hand, CD56dimCD16bright NK cells accumulate in the liver of patients with primary biliary disease aided by the CXCR1/CXCL8 axis. However, the types of chemokines that contribute to their accumulation in target organs during graft vs. host (GvH) disease are not known. Further, chemokines activate NK cells to become highly cytolytic cells known as CC chemokine-activated killer (CHAK) cells that kill tumor cells. In summary, chemokines whether secreted in an autocrine or paracrine fashion regulate various biological functions of NK cells. Depending on the tissue and the chemokine secreted, NK cells may ameliorate the disease such as their roles in combating tumors or virally infected cells, and their therapeutic potentials in treating leukemias and other hematological malignancies, as well as reducing the incidence of GvH disease. In contrast, they may exacerbate the disease by damaging the affected tissues through direct cytotoxicity or by the release of multiple inflammatory cytokines and chemokines. Examples are their deleterious roles in autoimmune diseases such as rheumatoid arthritis and primary biliary cirrhosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agaugue S, Marcenaro E, Ferranti B, Moretta L, Moretta A (2008) Human natural killer cells exposed to IL-2, IL-12, IL-18 or IL-4 differently modulate priming of naïve T cells by monocyte-derived dendritic cells. Blood 112:1776–1783

    PubMed  CAS  Google Scholar 

  • Al-Aoukaty A, Rolstad B, Giaid A, Maghazachi AA (1998) MIP-3α MIP-3β and fractalkine induce the locomotion and the mobilization of intracellular calcium, and activate the heterotrimeric G proteins in human natural killer cells. Immunology 95:618–624

    PubMed  CAS  Google Scholar 

  • Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609

    PubMed  CAS  Google Scholar 

  • Al-Falahi Y, Sand KL, Knudsen E, Rolin J, Maghazachi AA (2009) Splenic natural killer cell activity in two models of experimental neurodegenerative diseases. J Cell Mol Med 13:2693–2703

    Google Scholar 

  • Allavena P, Bianchi G, Zhou D, van Damme J, Jílek P, Sozzani S, Mantovani A (1994) Induction of natural killer cell migration by monocyte chemotactic protein-1, -2, and -3. Eur J Immunol 24:3233–3236

    PubMed  CAS  Google Scholar 

  • Asai O, Longo DL, Tian ZG, Hornung RL, Taub DD, Ruscetti FW, Murphy WJ (1998) Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101:1835–1842

    PubMed  CAS  Google Scholar 

  • Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, von Andrian UH, Brandtzaeg P, Haraldsen G (2001) The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 193:1105–1111

    PubMed  CAS  Google Scholar 

  • Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    PubMed  CAS  Google Scholar 

  • Basse PH, Herberman RB, Nannmark U (1991a) Accumulation of adoptively transferred adherent, lymphokine-activated killer cells in murine metastases. J Exp Med 174:479–488

    PubMed  CAS  Google Scholar 

  • Basse PH, Nannmark U, Johansson BR, Herberman RB, Goldfarb RH (1991b) Establishment of cell-to-cell contact by adoptively transferred adherent lymphokine-activated killer cells with metastatic murine melanoma cells. J Natl Cancer Inst 83:944–950

    PubMed  CAS  Google Scholar 

  • Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokines receptor expression. J Immunol 177:7833–7840

    PubMed  CAS  Google Scholar 

  • Bernardini G, Sciumè G, Bosisio D, Morrone S, Sozzani S, Santoni A (2008) CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 111:3626–3634

    PubMed  CAS  Google Scholar 

  • Bianchi G, Sozzani S, Zlotnik A, Mantovani A, Allavena P (1996) Migratory response of human natural killer cells to lymphotactin. Eur J Immunol 26:3238–3241

    CAS  Google Scholar 

  • Bouazzaoui A, Spacenko E, Mueller G, Miklos S, Huber E, Holler E, Andreesen R, Hildebrandt GC (2009) Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease. Genes Immun (Epub ahead of print)

    Google Scholar 

  • Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH, Broxmeyer HE, Cornetta K (2000) The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 164:4025–4031

    PubMed  CAS  Google Scholar 

  • Bruserud Ø, Kittang AO (2010) Chemokines in experimental and clinical hematology. Curr Top Microbiol Immunol (in press)

    Google Scholar 

  • Burke SM, Issekutz TB, Mohan K, Lee PW, Shmulevitz M, Marshall JS (2008) Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood 111:5467–5476

    PubMed  CAS  Google Scholar 

  • Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L, Butcher EC (2001) Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166:6477–6482

    PubMed  CAS  Google Scholar 

  • Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C, Bossi F, Mocci C, Sarazani F, Tedesco F, Santoni A, Gismondi A (2008) Recruitment of circulating NK cells through decidual tissues: a possibile mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 111:3108–3115

    PubMed  CAS  Google Scholar 

  • Chantakru S, Kuziel WA, Maeda N, Croy BA (2001) A study on the density and distribution of uterine natural killer cells at mid pregnancy in mice genetically-ablated for CCR2, CCR 5 and the CCR5 receptor ligand, MIP-1α. J Reprod Immunol 49:33–47

    PubMed  CAS  Google Scholar 

  • Chensue SW (2000) Molecular machinations: chemokine signals in host–pathogen interactions. Clin Microbiol Rev 14:821–835

    Google Scholar 

  • Chiesa MD, Vitale M, Carlomagno S, Ferlazzo G, Moretta L, Moretta A (2003) The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur J Immunol 33:1657–1666

    PubMed  Google Scholar 

  • Chuang Y-H, Lian Z-X, Tsuneyama K, Chiang BL, Ansari AA, Coppel RL, Gershwin ME (2006) Increased killing activity and decreased cytokine production in NK cells in patients with primari biliary cirrhosis. J Autoimmun 26:232–240

    PubMed  CAS  Google Scholar 

  • Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF (2004) CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol 173:6418–6426

    PubMed  CAS  Google Scholar 

  • Dorner BG, Smith HR, French AR, Kim S, Poursine-Laurent J, Beckman DL, Pingel JT, Kroczek RA, Yokoyama WM (2004) Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection. J Immunol 172:3119–3131

    PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    PubMed  CAS  Google Scholar 

  • Ebert LM, Meuter S, Moser B (2006) Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J Immunol 176:4331–4336

    PubMed  CAS  Google Scholar 

  • Fehniger TA, Herbein G, Yu H, Para MI, Bernstein ZP, O’Brien WA, Caligiuri MA (1998) Natural killer cells from HIV-1+ patients produce C-C chemokines and inhibit HIV-1 infection. J Immunol 161:6433–6438

    PubMed  CAS  Google Scholar 

  • Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA (2003) CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Thomas D, Lin S-L, Goodman K, Morandi B, Muller WA, Moretta A, Münz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462

    PubMed  CAS  Google Scholar 

  • Franitza S, Grabovsky V, Wald O, Weiss I, Beider K, Dagan M, Darash-Yahana M, Nagler A, Brocke S, Galun E, Alon R, Peled A (2004) Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. Eur J Immunol 34:1–9

    Google Scholar 

  • Fraticelli P, Sironi M, Bianchi G, D’Ambrosio D, Albanesi C, Stoppacciaro A, Chieppa M, Allavena P, Ruco L, Girolomoni G, Sinigaglia F, Vecchi A, Mantovani A (2001) Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 107:1173–1181

    PubMed  CAS  Google Scholar 

  • Gao J-Q, Tsuda Y, Han M, Xu DH, Kanagawa N, Hatanaka Y, Tani Y, Mizuguchi H, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2009) NK cells are migrated and indispensabile in the anti-tumor activity induced by CCL27 gene therapy. Cancer Immunol Immunother 58:291–299

    PubMed  CAS  Google Scholar 

  • Glas R, Franksson L, Une C, Eloranta ML, Ohlén C, Orn A, Kärre K (2000) Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype: an adaptive component of NK cell-mediated responses. J Exp Med 191:129–138

    PubMed  CAS  Google Scholar 

  • Goda S, Inoue H, Umehara H, Miyaji M, Nagano Y, Harakawa N, Imai H, Lee P, Macarthy JB, Ikeo T, Domae N, Shimizu Y, Iida J (2006) Matrix metalloproteinase-1 produced by human CXCL12-stimulated natural killer cells. Am J Pathol 169:445–458

    PubMed  CAS  Google Scholar 

  • Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A, Gray PW (1997) Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185:1595–1604

    PubMed  CAS  Google Scholar 

  • Hancock WW, Gao W, Csizmadia V, Faia KL, Shemmeri N, Luster AD (2001) Donor-derived IP-10 initiates development of acute allograft rejection. J Exp Med 193:975–980

    PubMed  CAS  Google Scholar 

  • Hanna J, Wald O, Wohl-Goldman D, Prus D, Markel G, Gazit R, Katz G, Haimov-Kochman R, Fujii N, Yagel S, Peled A, Mandelboim O (2003) CXCL12 expression by invasive trophoblasts induces the specific migration of CD16 human natural killer cells. Blood 102:1569–1577

    PubMed  CAS  Google Scholar 

  • Hanna J, Mussaffi H, Steuer G (2005) Functional aberrant expression of CCR2 receptor on chronically activated NK cells in patients with TAP-2 deficiency. Blood 106:3465–3474

    PubMed  CAS  Google Scholar 

  • Hedrick JA, Saylor V, Figueroa D, Mizoue L, Xu Y, Menon S, Abrams J, Handel T, Zlotnik A (1997) Lymphotactin is produced by NK cells and attracts both NK cells and T cells in vivo. J Immunol 158:1533–1540

    PubMed  CAS  Google Scholar 

  • Hokland M, Kjaergaard J, Kuppen PJ, Nannmark U, Agger R, Hokland P, Basse P (1999) Endogenous and adoptively transferred A-NK and T-LAK cells continuously accumulate within murine metastases up to 48 h after inoculation. In Vivo 13:199–204

    PubMed  CAS  Google Scholar 

  • Huang D, Shi F-D, Jung S, Pien GC, Wang J, Salazar-Mather TP, He TT, Weaver JT, Ljunggren HG, Biron CA, Littman DR, Ransohoff RM (2006) The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20:896–905

    PubMed  CAS  Google Scholar 

  • Hyakudomi M, Matsubara T, Hyakudomi R, Yamamoto T, Kinugasa S, Yamanoi A, Maruyama R, Tanaka T (2008) Increased expression of fraktaline is correlated with a better prognosis and an increased number of both CD8+ T cells and natural killer cells in gastric adenocarcinoma. Ann Surg Oncol 15:1775–1782

    PubMed  Google Scholar 

  • Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530

    PubMed  CAS  Google Scholar 

  • Inngjerdingen M, Damaj B, Maghazachi AA (2000) Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. J Immunol 164:4048–4054

    PubMed  CAS  Google Scholar 

  • Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97:367–375

    PubMed  CAS  Google Scholar 

  • Jiang Y, Zhang Z, Diao Y, Jin X, Shi W, Geng W, Dai D, Zhang M, Han X, Liu J, Wang Y, Shang H (2008) Expression of chemokines receptors on natural killer cells in HIV-infected individuals. Cell Immunol 251:19–24

    PubMed  CAS  Google Scholar 

  • Kammula US, White DE, Rosenberg SA (1998) Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83:797–805

    PubMed  CAS  Google Scholar 

  • Khan IA, Thomas SY, Moretto MM, Lee FS, Islam SA, Combe C, Schwartzman JD, Luster AD (2006) CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathogens 2:484–500

    CAS  Google Scholar 

  • Kim CH, Pelus LM, Appelbaum E, Johanson K, Anzai N, Broxmeyer HE (1999) CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKβ-11/MIP-3β/ELC, are chemoattractants for CD56+CD16 NK cells and late stage lymphoid progenitors. Cell Immunol 193:226–235

    PubMed  CAS  Google Scholar 

  • Kim MH, Kitson RP, Albertsson P, Nannmark U, Basse PH, Kuppen PJ, Hokland ME, Goldfarb RH (2000) Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J Immunol 164:5883–5889

    PubMed  CAS  Google Scholar 

  • Kottilil S, Shin K, Planta M, McLaughlin M, Hallahan CW, Ghany M, Chun TW, Sneller MC, Fauci AS (2004) Expression of chemokine and inhibitory receptors on natural killer cells: effect of immune activation and HIV viremia. J Infect Dis 189:1193–1198

    PubMed  CAS  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the “missing self”. MHC molecules and NK cell recognition. Immunol Today 11:237–244

    PubMed  CAS  Google Scholar 

  • Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327

    PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 199:875–904

    Google Scholar 

  • Loza MJ, Perussia B (2004) The IL-12 signature: NK cell terminal CD56+high stage and effector functions. J Immunol 172:88–96

    PubMed  CAS  Google Scholar 

  • Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14:29–35

    Google Scholar 

  • Maghazachi AA (1997) Role of the heterotrimeric G proteins in stromal-derived factor-1α-induced natural killer cell chemotaxis and calcium mobilization. Biochem Biophys Res Commun 236:270–274

    PubMed  CAS  Google Scholar 

  • Maghazachi AA (2003) G protein-coupled receptors in natural killer cells. J Leukoc Biol 74:16–24

    PubMed  CAS  Google Scholar 

  • Maghazachi AA (2005a) Compartmentalization of human natural killer cells. Mol Immunol 42:523–529

    PubMed  CAS  Google Scholar 

  • Maghazachi AA (2005b) Insights into seven and single transmembrane-spanning domain receptors and their signalling pathways in human natural killer cells. Pharmacol Rev 57:339–357

    PubMed  CAS  Google Scholar 

  • Maghazachi AA, Al-Aoukaty A (1998) Chemokines activate natural killer cells through heterotrimeric G-proteins: implications for the treatment of AIDS and cancer. FASEB J 12:913–924

    PubMed  CAS  Google Scholar 

  • Maghazachi AA, Fitzgibbon L (1990) Fate of intravenously administered rat lymphokine-activated killer cells labeled with different markers. Cancer Immunol Immunother 31:139–145

    PubMed  CAS  Google Scholar 

  • Maghazachi AA, Al-Aoukaty A, Schall TJ (1994) C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol 153:4969–4977

    PubMed  CAS  Google Scholar 

  • Maghazachi AA, Al-Aoukaty A, Schall TJ (1996) CC chemokines induce the generation of killer cells from CD56+ cells. Eur J Immunol 26:315–319

    PubMed  CAS  Google Scholar 

  • Maghazachi AA, Skålhegg BS, Rolstad B, Al-Aoukaty A (1997) Interferon-inducible protein-10 and lymphotactin induce the chemotaxis and mobilization of intracellular calcium in natural killer cells through pertussis toxin-sensitive and -insensitive heterotrimeric G-proteins. FASEB J 11:765–774

    PubMed  CAS  Google Scholar 

  • Mapara MY, Leng C, Kim YM, Bronson R, Lokshin A, Luster A, Meukoc S (2006) Expression of chemokines in GVHD target organs is influenced by conditioning and genetic factors and amplified by GVHR. Biol Blood Marrow Transplant 12:623–634

    PubMed  CAS  Google Scholar 

  • Mizrahi S, Yefenof E, Gross M, Attal P, Ben Yaakov A, Goldman-Wohl D, Maly B, Stern N, Katz G, Gazit R, Sionov RV, Mandelboim O, Chaushu S (2007) A phenotypic and functional characterization of NK cells in adenoids. J Leukoc Biol 82:1095–1105

    PubMed  CAS  Google Scholar 

  • Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–964

    PubMed  CAS  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    PubMed  CAS  Google Scholar 

  • Morrison BE, Park SJ, Mooney LM, Mehrad B (2003) Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 112:1862–1870

    PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  • Nannmark U, Hokland ME, Agger R (2000) Tumor blood supply and tumor localization by adoptively transferred IL-2 activated natural killer cells. In Vivo 14:651–658

    PubMed  CAS  Google Scholar 

  • Nokihara H, Yanagawa H, Nishioka Y, Yano S, Mukaida N, Matsushima K, Sone S (2000) Natural killer cell-dependent suppression of systemic spread of human lung adenocarcinoma cells by monocyte chemoattractant protein-1 gene transfection in severe combined immunodeficient mice. Cancer Res 60:7002–7007

    PubMed  CAS  Google Scholar 

  • Oliva A, Kinter AL, Vaccarezza M, Rubbert A, Catanzaro A, Moir S, Monaco J, Ehler L, Mizell S, Jackson R, Li Y, Romano JW, Fauci AS (1998) Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J Clin Invest 102:223–231

    PubMed  CAS  Google Scholar 

  • Olsnes AM, Hatfield KJ, Bruserud Ø (2009) The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J BUON 14(Suppl 1):S131–S140

    PubMed  Google Scholar 

  • Ottaviani C, Nasorri F, Bedini C, de Pità O, Girolomoni G, Cavani A (2006) CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 36:118–128

    PubMed  CAS  Google Scholar 

  • Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL (2000) Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol 164:4481–4492

    PubMed  CAS  Google Scholar 

  • Parolini S, Santoro A, Marcenaro E (2007) The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109:3625–3632

    PubMed  CAS  Google Scholar 

  • Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183

    PubMed  CAS  Google Scholar 

  • Robinson LA, Nataraj C, Thomas DW, Cosby JM, Griffiths R, Bautch VL, Patel DD, Coffman TM (2003) The chemokines CX3CL1 regulates NK cell activity in vivo. Cell Immunol 225:122–130

    PubMed  CAS  Google Scholar 

  • Rolin J, Sand KL, Knudsen E, Maghazachi AA (2010) FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol Immunother. 59:575–586

    PubMed  Google Scholar 

  • Rolstad B, Herberman RB, Reynolds CW (1986) Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL). J Immunol 136:2800–2808

    PubMed  CAS  Google Scholar 

  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  • Salazar-Mather TP, Lewis CA, Biron CA (2002) Type I interferons regulate inflammatory cell trafficking and macrophage inflammatory protein 1α delivery to the liver. J Clin Invest 110:321–330

    PubMed  CAS  Google Scholar 

  • Sand KL, Knudsen E, Rolin J, Al-Falahi Y, Maghazachi AA (2009) Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell Mol Life Sci 66:1446–1456

    PubMed  CAS  Google Scholar 

  • Sasaki A, Jain RK, Maghazachi AA, Goldfarb RH, Herberman RB (1989) Low deformability of lymphokine-activated killer cells as a possible determinant of in vivo distribution. Cancer Res 49:3742–3746

    PubMed  CAS  Google Scholar 

  • Sebok K, Woodside D, Al-Aoukaty A, Ho AD, Gluck S, Maghazachi AA (1993) IL-8 induces the locomotion of human IL-2-activated natural killer cells. Involvement of a guanine nucleotide binding (Go) protein. J Immunol 150:1524–1534

    PubMed  CAS  Google Scholar 

  • Sechler JM, Barlic J, Grivel J-C, Murphy PM (2004) IL-15 alters expression and function of the chemokines receptor CX3CR1 in human NK cells. Cell Immunol 230:99–108

    PubMed  CAS  Google Scholar 

  • Shang X, Qiu B, Frait KA, Hu JS, Sonstein J, Curtis JL, Lu B, Gerard C, Chensue SW (2000) Chemokine receptor 1 knockout abrogates natural killer cell recruitment and impairs type-1 cytokines in lymphoid tissue during pulmonary granuloma formation. Am J Pathol 157:2055–2063

    PubMed  CAS  Google Scholar 

  • Shi F-D, Takeda K, Akira S, Sarvetnick N, Ljunggren HG (2000) IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-γ by NK cells. J Immunol 165:3099–3104

    PubMed  CAS  Google Scholar 

  • Taub D (1999) Natural killer cell-chemokine interactions. Biologic effects of natural killer cell trafficking and cytolysis. In: Rollin BJ (ed) Chemokines and cancer. Humana Press, NJ

    Google Scholar 

  • Taub DD, Sayers TJ, Carter CRD, Ortaldo JR (1995) α and β Chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 155:3877–3888

    PubMed  CAS  Google Scholar 

  • van den Heuvel MJ, Chantakru S, Xuemei X, Evans SS, Tekpetey F, Mote PA, Clarke CL, Croy BA (2005) Trafficking of circulating pro-NK cells to the decidualizing uterus: regulatory mechanisms in the mouse of human. Immunol Invest 34:273–293

    PubMed  Google Scholar 

  • Velardi A, Ruggeri L, Alessandro M, Moretta L (2002) NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol 23:438–444

    PubMed  CAS  Google Scholar 

  • Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT (2009) Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 21:525–530

    PubMed  CAS  Google Scholar 

  • Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28

    PubMed  Google Scholar 

  • Vitale C, Cottalasso F, Montaldo E, Moretta L, Mingari MC (2008) Methylprednisolone induces preferential and rapid differentiation of CD34+ cord blood precursors toward NK cells. Int Immunol 20:565–575

    PubMed  CAS  Google Scholar 

  • Voutsadakis IA (2003) NK cells in allogeneic bone marrow transplantation. Cancer Immunol Immunother 52:525–534

    PubMed  Google Scholar 

  • Wald O, Weiss ID, Wald H (2006) IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J Immunol 176:4716–4729

    PubMed  CAS  Google Scholar 

  • Watt SV, Andrews DA, Takeda K, Smyth MJ, Hayakawa Y (2008) IFN-γ-dependent recruitment of mature CD27high NK cells to lymph nodes primed by dendritic cells. J Immunol 181:5323–5330

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–29

    PubMed  CAS  Google Scholar 

  • Young HA, Ortaldo J (2006) Cytokines as critical co-stimulatory molecules in modulating the immune response of natural killer cells. Cell Res 16:20–24

    PubMed  CAS  Google Scholar 

  • Zeng Y, Huebener N, Fest S, Weixler S, Schroeder U, Gaedicke G, Xiang R, Schramm A, Eggert A, Reisfeld RA, Lode HN (2007) Fractalkine (CX3CL1)- and interleukin-2-enriched neuroblastoma microenvironment induces eradication of metastases mediated by T cells and natural killer cells. Cancer Res 67:2331–2338

    PubMed  CAS  Google Scholar 

  • Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687

    PubMed  CAS  Google Scholar 

  • Zibert A, Balzer S, Souquet M, Quang TH, Paris-Scholz C, Roskrow M, Dilloo D (2004) CCL3/MIP-1alpha is a potent immunostimulator when coexpressed with interleukin-2 or granulocyte-macrophage colony-stimulating factor in a leukemia/lymphoma vaccine. Hum Gene Ther 15:21–34

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Haakon Benestad for critically reading this manuscript. Work in the author’s laboratory is supported by grants from the University of Oslo, Anders Jahres Fond, the Norwegian Cancer Society, and Legat for fremme av kreftforskningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzam A. Maghazachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maghazachi, A.A. (2010). Role of Chemokines in the Biology of Natural Killer Cells. In: Bruserud, O. (eds) The Chemokine System in Experimental and Clinical Hematology. Current Topics in Microbiology and Immunology, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_20

Download citation

Publish with us

Policies and ethics