Skip to main content

Targeting Skin Dendritic Cells to Improve Intradermal Vaccination

  • Chapter
  • First Online:
Intradermal Immunization

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 351))

Abstract

Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin+), dermal langerinneg, and dermal langerin+ dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerinneg dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14+ dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberer W, Kruisbeek AM, Shimada S, Katz SI (1986) In vivo treatment with anti-I-A antibodies: differential effects on Ia antigens and antigen-presenting cell function of spleen cells and epidermal Langerhans cells. J Immunol 136:830–836

    PubMed  CAS  Google Scholar 

  • Allam JP, Niederhagen B, Bucheler M, Appel T, Betten H, Bieber T, Berge S, Novak N (2006) Comparative analysis of nasal and oral mucosa dendritic cells. Allergy 61:166–172

    PubMed  CAS  Google Scholar 

  • Allan RS, Smith CM, Belz GT, Van Lint AL, Wakim LM, Heath WR, Carbone FR (2003) Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301:1925–1928

    PubMed  CAS  Google Scholar 

  • Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR (2007) CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int Immunol 19:1271–1279

    PubMed  CAS  Google Scholar 

  • Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, MacGregor D, Cebon J, Dunbar PR (2009) Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 113:1257–1267

    PubMed  CAS  Google Scholar 

  • Ariizumi K, Shen GL, Shikano S, Ritter R, III, Zukas P, Edelbaum D, Morita A, Takashima A (2000a) Cloning of a second dendritic cell-associated C-type lectin (Dectin-2) and its alternatively spliced isoforms. J Biol Chem 275:11957–11963

    PubMed  CAS  Google Scholar 

  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R, III, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A (2000b) Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275:20157–20167

    PubMed  CAS  Google Scholar 

  • Arnou R, Icardi G, De Decker M, Ambrozaitis A, Kazek MP, Weber F, Van Damme P (2009) Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine 27:7304–7312

    PubMed  CAS  Google Scholar 

  • Banchereau J, Klechevsky E, Schmitt N, Morita R, Palucka K, Ueno H (2009) Harnessing human dendritic cell subsets to design novel vaccines. Ann N Y Acad Sci 1174:24–32

    PubMed  CAS  Google Scholar 

  • Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10:488–495

    PubMed  CAS  Google Scholar 

  • Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, Schuler G, Schaft N, Dörrie J (2010) Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116:2277–2285

    PubMed  CAS  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196:1627–1638

    PubMed  CAS  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii SI, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    PubMed  CAS  Google Scholar 

  • Boscardin SB, Hafalla JCR, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, Morrot A, Zavala F, Steinman RM, Nussenzweig RS, Nussenzweig MC (2006) Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med 203:599–606

    PubMed  CAS  Google Scholar 

  • Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, Nussenzweig MC, Piperno AG, Steinman RM (2007) DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 104:1289–1294

    PubMed  CAS  Google Scholar 

  • Bruder D, Westendorf AM, Hansen W, Prettin S, Gruber AD, Qian YJ, Von Boehmer H, Mahnke K, Buer J (2005) On the edge of autoimmunity—T-cell stimulation by steady-state dendritic cells prevents autoimmune diabetes. Diabetes 54:3395–3401

    PubMed  CAS  Google Scholar 

  • Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007) Identification of a novel population of langerin + dendritic cells. J Exp Med 204:3147–3156

    PubMed  CAS  Google Scholar 

  • Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Teh JS, Lo JCY, Rizzitelli A, Wu L, Vremec D, Van Dommelen SLH, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud M (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112:3264–3273

    PubMed  CAS  Google Scholar 

  • Caminschi I, Lahoud MH, Shortman K (2009) Enhancing immune responses by targeting antigen to DC. Eur J Immunol 39:931–938

    PubMed  CAS  Google Scholar 

  • Carter RW, Thompson C, Reid DM, Wong SY, Tough DF (2006a) Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J Immunol 177:2276–2284

    PubMed  CAS  Google Scholar 

  • Carter RW, Thompson C, Reid DM, Wong SYC, Tough DF (2006b) Induction of CD8+ T cell responses through targeting of antigen to Dectin-2. Cell Immunol 239:87–91

    PubMed  CAS  Google Scholar 

  • Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA (1997) Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 186:1481–1486

    PubMed  CAS  Google Scholar 

  • Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α. 2. Functional analysis. Blood 90:1458–1470

    PubMed  CAS  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9:28–38

    PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    PubMed  CAS  Google Scholar 

  • Cheong C, Idoyaga J, Do Y, Pack M, Park SH, Lee H, Kang YS, Choi JH, Kim JY, Bonito A, Inaba K, Yamazaki S, Steinman RM, Park CG (2007) Production of monoclonal antibodies that recognize the extracellular domain of mouse Langerin/CD207. J Immunol Methods 324:48–62

    PubMed  CAS  Google Scholar 

  • Cheong C, Matos I, Choi J-H, Dandamudi DB,Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman RM (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143:416–429

    PubMed  CAS  Google Scholar 

  • Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, Bozzacco L, Trumpfheller C, Park CG, Steinman RM (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206:497–505

    PubMed  CAS  Google Scholar 

  • Cutler CW, Jotwani R (2006) Dendritic cells at the oral mucosal interface. J Dent Res 85:678–689

    PubMed  CAS  Google Scholar 

  • Deans GD, Stiver HG, McElhaney JE (2010) Influenza vaccines provide diminished protection but are cost-saving in older adults. J Intern Med 267:220–227

    PubMed  CAS  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat JF, Haeuw JF, Aubry JP, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy JY, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362

    PubMed  CAS  Google Scholar 

  • Dickgreber N, Stoitzner P, Bai Y, Price KM, Farrand KJ, Manning K, Angel CE, Dunbar PR, Ronchese F, Fraser JD, Backstrom BT, Hermans IF (2009) Targeting antigen to MHC class II molecules promotes efficient cross-presentation and enhances immunotherapy. J Immunol 182:1260–1269

    PubMed  CAS  Google Scholar 

  • Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Ait-Yahia S, McLellan A, Eggert A, Romani N, Saeland S (2005) Mouse lymphoid tissue contains distinct subsets of Langerin/CD207+ dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol 125:983–994

    PubMed  CAS  Google Scholar 

  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–111

    PubMed  CAS  Google Scholar 

  • Dupasquier M, Stoitzner P, Van Oudenaren A, Romani N, Leenen PJM (2004) Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J Invest Dermatol 123:876–879

    PubMed  CAS  Google Scholar 

  • Dupasquier M, Prens EP, Leenen PJM (2008) Dermal mononuclear phagocytes. In: Saeland S (ed) Recent advances in skin immunology. Research Signpost, Trivandrum, India pp 75–104

    Google Scholar 

  • Dupuis M, Murphy TJ, Higgins D, Ugozzoli M, Van Nest G, Ott G, McDonald DM (1998) Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol 186:18–27

    PubMed  CAS  Google Scholar 

  • Ebner S, Lenz A, Reider D, Fritsch P, Schuler G, Romani N (1998) Expression of maturation-/migration-related molecules on human dendritic cells from blood and skin. Immunobiology 198:568–587

    PubMed  CAS  Google Scholar 

  • Ebner S, Ratzinger G, Krösbacher B, Schmuth M, Weiss A, Reider D, Kroczek RA, Herold M, Heufler C, Fritsch P, Romani N (2001) Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. J Immunol 166:633–641

    PubMed  CAS  Google Scholar 

  • Ebner S, Ehammer Z, Holzmann S, Schwingshackl P, Forstner M, Stoitzner P, Huemer GM, Fritsch P, Romani N (2004) Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int Immunol 16:877–887

    PubMed  CAS  Google Scholar 

  • Ebner S, Nguyen VA, Forstner M, Wang YH, Wolfram D, Liu Y-J, Romani N (2007) Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen presenting cells that induce pro-allergic T cells. J Allergy Clin Immunol 119:982–990

    PubMed  CAS  Google Scholar 

  • Farrand KJ, Dickgreber N, Stoitzner P, Ronchese F, Petersen TR, Hermans IF (2009) Langerin + CD8α + dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J Immunol 183:7732–7742

    PubMed  CAS  Google Scholar 

  • Figdor CG, Van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2:77–84

    PubMed  CAS  Google Scholar 

  • Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del Frari B, Koch F, Park CG, Steinman RM, Idoyaga J, Romani N (2010) Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol 130:755–762

    PubMed  CAS  Google Scholar 

  • Frech SA, Dupont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF, Okhuysen PC, Guerrero NH, Martinez-Sandoval FG, Melendez-Romero JH, Jiang ZD, Asturias EJ, Halpern J, Torres OR, Hoffman AS, Villar CP, Kassem RN, Flyer DC, Andersen BH, Kazempour K, Breisch SA, Glenn GM (2008) Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet 371:2019–2025

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-gamma-producing NKT response induced with alpha- galactosylceramide-loaded DCs. Nat Immunol 3:867–874

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H, Steinman RM (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198

    PubMed  CAS  Google Scholar 

  • Gerlini G, Hefti HP, Kleinhans M, Nickoloff BJ, Burg G, Nestle FO (2001) CD1d is expressed on dermal dendritic cells and monocyte-derived dendritic cells. J Invest Dermatol 117:576–582

    PubMed  CAS  Google Scholar 

  • Ginhoux F, Collin M, Bogunovic M, Abel M, Leboef M, Helft J, Ochando JC, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph GJ, Merad M (2007) Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146

    PubMed  CAS  Google Scholar 

  • Ginhoux F, Ng LG, Merad M (2010) Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr Top Microbiol Immunol 351:1–24

    Google Scholar 

  • Girolomoni G, Caux C, Lebecque S, Dezutter-Dambuyant C, Ricciardi-Castagnoli P (2002) Langerhans cells: still a fundamental paradigm for studying the immunobiology of dendritic cells. Trends Immunol 23:6–8

    PubMed  CAS  Google Scholar 

  • Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi JF, Park CG, Trumpfheller C, Piguet V, Moran TM, Steinman RM (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 175:4265–4273

    PubMed  CAS  Google Scholar 

  • Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, Bullock S, Grisotto M, Booth T, Taub P, Hilkens C, Merad M, Collin M (2009) Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 206:371–385

    PubMed  CAS  Google Scholar 

  • Hart DNJ, Fabre JW (1981) Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 154:347–361

    PubMed  CAS  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    PubMed  CAS  Google Scholar 

  • Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10:1237–1244

    PubMed  CAS  Google Scholar 

  • Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos J (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26

    PubMed  CAS  Google Scholar 

  • Henri S, Vremec D, Kamath A, Waithman J, Williams S, Benoist C, Burnham K, Saeland S, Handman E, Shortman K (2001) The dendritic cell populations of mouse lymph nodes. J Immunol 167:741–748

    PubMed  CAS  Google Scholar 

  • Henri S, Poulin LF, Tamoutounour S, Arduín L, Guilliams M, de Bovis B, Devilard E, Viret C, Azukizawa H, Kissenpfennig A, Malissen B (2010) CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207:189–206

    PubMed  CAS  Google Scholar 

  • Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, Enk A, Steinman RM, Romani N, Schuler G (1996) Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 26:659–668

    PubMed  CAS  Google Scholar 

  • Hickey AJ, Garmise RJ (2009) Dry powder nasal vaccines as an alternative to needle-based delivery. Crit Rev Ther Drug Carrier Syst 26:1–27

    PubMed  Google Scholar 

  • Idoyaga J, Cheong C, Suda K, Suda N, Kim JY, Lee H, Park CG, Steinman RM (2008) The Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and MHC II products in vivo. J Immunol 180:3647–3650

    PubMed  CAS  Google Scholar 

  • Idoyaga J, Suda N, Suda K, Park CG, Steinman RM (2009) Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc Natl Acad Sci USA 106:1524–1529

    PubMed  CAS  Google Scholar 

  • Inaba K, Swiggard WJ, Inaba M, Meltzer J, Mirza A, Sasagawa T, Nussenzweig MC, Steinman RM (1995) Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. I. Expression on dendritic cells and other subsets of mouse leukocytes. Cell Immunol 163:148–156

    PubMed  CAS  Google Scholar 

  • Iwasaki A (2007) Mucosal dendritic cells. Annu Rev Immunol 25:381–418

    PubMed  CAS  Google Scholar 

  • Kaplan DH, Kissenpfennig A, Clausen BE (2008) Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol 38:2369–2376

    PubMed  CAS  Google Scholar 

  • Kashihara M, Ueda M, Horiguchi Y, Furukawa F, Hanaoka M, Imamura S (1986) A monoclonal antibody specifically reactive to human Langerhans cells. J Invest Dermatol 87:602–612

    PubMed  CAS  Google Scholar 

  • Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    PubMed  CAS  Google Scholar 

  • Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, Reiter Y, Banchereau J, Ueno H (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510

    PubMed  CAS  Google Scholar 

  • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M (2009) External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 206:2937–2946

    PubMed  CAS  Google Scholar 

  • Lahoud MH, Proietto AI, Ahmet F, Kitsoulis S, Eidsmo L, Wu L, Sathe P, Pietersz S, Chang HW, Walker ID, Maraskovsky E, Braley H, Lew AM, Wright MD, Heath WR, Shortman K, Caminschi I (2009) The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J Immunol 182:7587–7594

    PubMed  CAS  Google Scholar 

  • Langerhans P (1868) Über die Nerven der menschlichen Haut. Virchows Arch [A] 44:325–337

    Google Scholar 

  • Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483–1493

    PubMed  CAS  Google Scholar 

  • Lenz A, Heine M, Schuler G, Romani N (1993) Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 92:2587–2596

    PubMed  CAS  Google Scholar 

  • Lukas M, Stössel H, Hefel L, Imamura S, Fritsch P, Sepp NT, Schuler G, Romani N (1996) Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J Invest Dermatol 106:1293–1299

    PubMed  CAS  Google Scholar 

  • Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM (2000) The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151:673–683

    PubMed  CAS  Google Scholar 

  • Mahnke K, Qian YJ, Fondel S, Brueck J, Becker C, Enk AH (2005) Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 65:7007–7012

    PubMed  CAS  Google Scholar 

  • Maier MK, Seth S, Czeloth N, Qiu Q, Ravens I, Kremmer E, Ebel M, Müller W, Pabst O, Förster R, Bernhardt G (2007) The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur J Immunol 37:2214–2225

    PubMed  CAS  Google Scholar 

  • McLellan AD, Kapp M, Eggert A, Linden C, Bommhardt U, Bröcker EB, Kämmerer U, Kämpgen E (2002) Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood 99:2084–2093

    PubMed  CAS  Google Scholar 

  • Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947

    PubMed  CAS  Google Scholar 

  • Mukhopadhaya A, Hanafusa T, Jarchum I, Chen YG, Iwai Y, Serreze DV, Steinman RM, Tarbell KV, DiLorenzo TP (2008) Selective delivery of beta cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice. Proc Natl Acad Sci USA 105:6374–6379

    PubMed  CAS  Google Scholar 

  • Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, Clausen BE, Merad M, Udey MC (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci USA 106:3312–3317

    PubMed  CAS  Google Scholar 

  • Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG, Huang Y, Hannaman D, Schlesinger SJ, Mizenina O, Nussenzweig MC, Uberla K, Steinman RM (2008) The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 118:1427–1436

    PubMed  CAS  Google Scholar 

  • Neparidze N, Dhodapkar MV (2009) Harnessing CD1d-restricted T cells toward antitumor immunity in humans. Ann N Y Acad Sci 1174:61–67

    PubMed  CAS  Google Scholar 

  • Nestle FO, Zheng X-G, Thompson CB, Turka LA, Nickoloff BJ (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151:6535–6545

    PubMed  CAS  Google Scholar 

  • Nicolas JF, Guy B (2008) Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 7:1201–1214

    PubMed  Google Scholar 

  • Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Förster R (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288

    PubMed  CAS  Google Scholar 

  • Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B (2007) The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204:3119–3131

    PubMed  CAS  Google Scholar 

  • Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11:753–761

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Ochando J, Partida-Sánchez S (2008) Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26:293–316

    PubMed  CAS  Google Scholar 

  • Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168:4361–4371

    PubMed  CAS  Google Scholar 

  • Ratzinger G, Baggers J, de Cos MA, Yuan J, Dao T, Reagan JL, Münz C, Heller G, Young JW (2004) Mature human Langerhans cells derived from CD34+ hemopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J Immunol 173:2780–2791

    Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    PubMed  CAS  Google Scholar 

  • Romani N, Lenz A, Glassel H, Stössel H, Stanzl U, Majdic O, Fritsch P, Schuler G (1989) Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 93:600–609

    PubMed  CAS  Google Scholar 

  • Romani N, Ratzinger G, Pfaller K, Salvenmoser W, Stössel H, Koch F, Stoitzner P (2001) Migration of dendritic cells into lymphatics—the Langerhans cell example: routes, regulation, and relevance. Int Rev Cytol 207:237–270

    PubMed  CAS  Google Scholar 

  • Romani N, Ebner S, Flacher V, Tripp CH, Heufler C, Clausen BE, Stoitzner P (2008) Langerhans cells—dendritic cells of the epidermis and other epithelia. In: Saeland S (ed) Recent advances in skin immunology. Research Signpost, Trivandrum, India pp 27–73

    Google Scholar 

  • Romani N, Clausen BE, Stoitzner P (2010a) Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 234:120–141

    PubMed  CAS  Google Scholar 

  • Romani N, Merad M, Stingl G, Stoitzner P (2010b) Langerhans cells at the interface of medicine, science, and industry. J Invest Dermatol 130:331–335

    PubMed  Google Scholar 

  • Romani N, Thurnher M, Idoyaga J, Steinman RM, Flacher V (2010c) Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol 88:424–430

    PubMed  Google Scholar 

  • Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526–546

    PubMed  CAS  Google Scholar 

  • Sparber F, Tripp CH, Hermann M, Romani N, Stoitzner P (2010) Langerhans cells and dermal dendritic cells capture protein antigens in the skin: possible targets for vaccination through skin. Immunobiology 215:770–779

    PubMed  CAS  Google Scholar 

  • Steinman RM (2008a) Dendritic cells and vaccines. Proc Bayl Univ Med Cent 21:3–8

    PubMed  Google Scholar 

  • Steinman RM (2008b) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324

    PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    PubMed  CAS  Google Scholar 

  • Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99:351–358

    PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    PubMed  CAS  Google Scholar 

  • Stingl G, Tamaki K, Katz SI (1980) Origin and function of epidermal Langerhans cells. Immunol Rev 53:149–174

    PubMed  CAS  Google Scholar 

  • Stoitzner P, Green LK, Jung JY, Price KM, Tripp CH, Malissen B, Kissenpfennig A, Hermans IF, Ronchese F (2008) Tumor immunotherapy by epicutaneous immunization requires Langerhans cells. J Immunol 180:1991–1998

    PubMed  CAS  Google Scholar 

  • Tacken PJ, De Vries IJM, Gijzen K, Joosten B, Wu DY, Rother RP, Faas SJ, Punt CJA, Torensma R, Adema GJ, Figdor CG (2005) Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106:1278–1285

    PubMed  CAS  Google Scholar 

  • Tagliani E, Guermonprez P, Sepulveda J, Lopez-Bravo M, Ardavin C, Amigorena S, Benvenuti F, Burrone OR (2008) Selection of an antibody library identifies a pathway to induce immunity by targeting CD36 on steady-state CD8α + dendritic cells. J Immunol 180:3201–3209

    PubMed  CAS  Google Scholar 

  • Teunissen MBM, Haniffa M, Collin MP (2011) Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 351:25–76

    Google Scholar 

  • Tripp CH, Sparber F, Hermans IF, Romani N, Stoitzner P (2009) Glycolipids injected into the skin are presented to NKT cells in the draining lymph node independently of migratory skin dendritic cells. J Immunol 182:7644–7654

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y, Schlesinger SJ, Colonna M, Steinman RM (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 105:2574–2579

    PubMed  CAS  Google Scholar 

  • Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3:975–983

    PubMed  CAS  Google Scholar 

  • Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J, Palucka K (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234:199–212

    PubMed  CAS  Google Scholar 

  • Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Dambuyant C, Vincent C, Massacrier C, Vincent J, Yoneda K, Banchereau J, Caux C, Davoust J, Saeland S (1999) The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 29:2695–2704

    PubMed  CAS  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81

    PubMed  CAS  Google Scholar 

  • Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM (2009) The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann N Y Acad Sci 1174:6–17

    PubMed  CAS  Google Scholar 

  • Warger T, Schild H, Rechtsteiner G (2007) Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 109:13–20

    PubMed  CAS  Google Scholar 

  • Weinlich G, Heine M, Stössel H, Zanella M, Stoitzner P, Ortner U, Smolle J, Koch F, Sepp NT, Schuler G, Romani N (1998) Entry into afferent lymphatics and maturation in situ of migrating cutaneous dendritic cells. J Invest Dermatol 110:441–448

    PubMed  CAS  Google Scholar 

  • Wilson NS, Villadangos JA (2004) Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98

    PubMed  Google Scholar 

  • Witmer-Pack MD, Valinsky J, Olivier W, Steinman RM (1987) Quantitation of surface antigens on cultured murine epidermal Langerhans cells: rapid and selective increase in the level of surface MHC products. J Invest Dermatol 90:387–394

    Google Scholar 

  • Yamazaki S, Steinman RM (2009) Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 54:69–75

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM (2008) CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181:6923–6933

    PubMed  CAS  Google Scholar 

  • Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest 117:2517–2525

    PubMed  CAS  Google Scholar 

  • Zaba LC, Krueger JG, Lowes MA (2009) Resident and inflammatory dendritic cells in human skin. J Invest Dermatol 129:302–308

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has continuously been supported by the Austrian Science Fund (currently, FWF project P21487 to P. Stoitzner). NR, CHT, and SE are further supported by the COMET Center ONCOTYROL and funded by the Federal Ministry for Transport Innovation & Technology (BMVIT) and the Federal Ministry of Economics & Labour/the Federal Ministry of Economy, Family & Youth (BMWA/BMWFJ), the Tiroler Zukunftsstiftung (TZS). We appreciate the participation of the TILAK hospital holding company, who serves as a partner the Oncotyrol research program. FS is supported by a grant (#11) of the IFTZ (Integriertes Forschungs- und Therapiezentrum) at Innsbruck Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Romani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romani, N., Flacher, V., Tripp, C.H., Sparber, F., Ebner, S., Stoitzner, P. (2011). Targeting Skin Dendritic Cells to Improve Intradermal Vaccination. In: Teunissen, M. (eds) Intradermal Immunization. Current Topics in Microbiology and Immunology, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_118

Download citation

Publish with us

Policies and ethics