Skip to main content

Mucosal Delivery Routes for Optimal Immunization: Targeting Immunity to the Right Tissues

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 354))

Abstract

The mucosal immune system exhibits a high degree of anatomic compartmentalization related to the migratory patterns of lymphocytes activated at different mucosal sites. The selective localization of mucosal lymphocytes to specific tissues is governed by cellular “homing” and chemokine receptors in conjunction with tissue-specific addressins and epithelial cell-derived chemokines that are differentially expressed in “effector” tissues. The compartmentalization of mucosal immune responses imposes constraints on the selection of vaccine administration route. Traditional routes of mucosal immunization include oral and nasal routes. Other routes for inducing mucosal immunity include the rectal, vaginal, sublingual, and transcutaneous routes. Sublingual administration is a new approach that results in induction of mucosal and systemic T cell and antibody responses with an exceptionally broad dissemination to different mucosae, including the gastrointestinal and respiratory tracts, and the genital mucosa. Here, we discuss how sublingual and different routes of immunization can be used to generate immune responses in the desired mucosal tissue(s).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berg EL et al (1989) Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol Rev 108:5–18

    Article  PubMed  CAS  Google Scholar 

  • Bilsborough J, Viney JL (2004) Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 127:300–309

    Article  PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends in immunology. Trends Immunol 25:570–577.

    Article  PubMed  CAS  Google Scholar 

  • Chang SY et al (2008) Cutting edge: Langerin + dendritic cells in the mesenteric lymph node set the stage for skin and gut immune system cross-talk. J Immunol 180:4361–4365

    PubMed  CAS  Google Scholar 

  • Cuburu N et al (2007) Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine 25:8598–8610

    Article  PubMed  CAS  Google Scholar 

  • Cuburu N et al (2009) Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol 183:7851–7859

    Article  PubMed  CAS  Google Scholar 

  • Czerkinsky C et al (1991) Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect Immun 59:996–1001

    PubMed  CAS  Google Scholar 

  • Eriksson K et al (1998) Specific-antibody-secreting cells in the rectums and genital tracts of nonhuman primates following vaccination. Infect Immunol 66:5889–5896

    PubMed  CAS  Google Scholar 

  • Fahlen-Yrlid et al (2009) CD11c(high)dendritic cells are essential for activation of CD4+ T cells and generation of specific antibodies following mucosal immunization. J Immunol 183:5032–5041

    Article  PubMed  CAS  Google Scholar 

  • Glenn GM RM et al (1998) Skin immunization made possible by cholera toxin. Nature 391:851

    Article  PubMed  CAS  Google Scholar 

  • Glenn GM TD et al (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11:S45–S53

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H et al (1999) New gut associated lymphoid tissue “cryptopatches” breed murine intestinal intraepithelial T cell precursors. Immunol Res 20:243–250

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A (2007) Mucosal dendritic cells. Annu Rev Immunol 25:381–418

    Article  PubMed  CAS  Google Scholar 

  • Jang MH et al (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci USA 101:6110–6115

    Article  PubMed  CAS  Google Scholar 

  • Jertborn M et al (1994) Immunological memory after immunization with oral cholera B subunit-whole-cell vaccine in Swedish volunteers. Vaccine 12:1078–1082

    Article  PubMed  CAS  Google Scholar 

  • Jertborn M et al (2001) Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect Immunol 69:4125–4128

    Article  PubMed  CAS  Google Scholar 

  • Johansson EL et al (2001) Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun 69:7481–7486

    Article  PubMed  CAS  Google Scholar 

  • Johansson EL et al (2004) Comparison of different routes of vaccination for eliciting antibody responses in the human stomach. Vaccine 22:984–990

    Article  PubMed  CAS  Google Scholar 

  • Johansson-Lindbom B et al (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Kiyono H, Fukuyama S (2004) NALT—versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski PA et al (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65:1387–1394

    PubMed  CAS  Google Scholar 

  • Kozlowski PA et al (2002) Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol 169:566–574

    PubMed  CAS  Google Scholar 

  • Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332

    Article  PubMed  CAS  Google Scholar 

  • Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3:822–829

    Article  PubMed  CAS  Google Scholar 

  • Kunkel EJ et al (2003) Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 10:313–323

    PubMed  CAS  Google Scholar 

  • Kunkel EJ et al (2003) CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 111:1001–1010

    PubMed  CAS  Google Scholar 

  • Mora JR et al (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424:88–93

    Article  PubMed  CAS  Google Scholar 

  • Mora JR et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  PubMed  CAS  Google Scholar 

  • Nardelli-Haefliger D et al (2003) Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J Natl Cancer Inst 95:1128–1137

    Article  PubMed  Google Scholar 

  • Ogra PL, Karzon DT (1969) Poliovirus antibody response in serum and nasal secretions following intranasal inoculation with inactivated poliovaccine. J Immunol 102:15–23

    PubMed  CAS  Google Scholar 

  • Ogra PL, Karzon DT (1969) Distribution of poliovirus antibody in serum, nasopharynx and alimentary tract following segmental immunization of lower alimentary tract with poliovaccine. J Immunol 102:1423–1430

    PubMed  CAS  Google Scholar 

  • Ogra PL, Ogra SS (1973) Local antibody response to poliovaccine in the human female genital tract. J Immunol 110:1307–1311

    PubMed  CAS  Google Scholar 

  • Ogra PL (1999) Mucosal immunology. Academic Press, San Diego, pp xliii, 1628

    Google Scholar 

  • Pan J et al (2000) A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 165:2943–2949

    PubMed  CAS  Google Scholar 

  • Quiding M et al (1991) Intestinal immune responses in humans. Oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J Clin Invest 88:143–148

    Article  PubMed  CAS  Google Scholar 

  • Quiding-Järbrink M et al (1995) Induction of compartmentalized B-cell responses in human tonsils. Infect Immun 63:853–857

    PubMed  Google Scholar 

  • Quiding-Järbrink M et al (1997) Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J Clin Invest 99:1281–1286

    Article  PubMed  Google Scholar 

  • Raghavan S et al (2010) Sublingual protects against Heliocopeter pylori infection and induces T and B cell responses in the stomach. Infect Immun 78:4251–4260

    Article  PubMed  CAS  Google Scholar 

  • Rakoff-Nahoum S et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  PubMed  CAS  Google Scholar 

  • Rescigno M, Di Sabatino A (2009) Dendritic cells in intestinal homeostasis and disease. J Clin Invest 119:2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Rudin A et al (1998) Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect Immun 66:3390–3396

    PubMed  CAS  Google Scholar 

  • Song JH et al (2008) Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Natl Acad Sci USA 105:1644–1649

    Article  PubMed  CAS  Google Scholar 

  • Song JH et al (2009) CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination. J Immunol 182(11):6851–6860

    Article  PubMed  CAS  Google Scholar 

  • Stagg AJ et al (2002) Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol 32:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Wang W et al (2000) Identification of a novel CC chemokine (CCL28) which binds CCR10 (GPR2). J Biol Chem 275:22313–22323

    Article  PubMed  CAS  Google Scholar 

  • Wassén L et al (1996) Local intravaginal vaccination of the female genital tract. Scand J Immunol 44(4):408–414

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Mi-Na Kweon for her comments regarding the contents and design of this review. Ms. Deborah Jin Hong. Mrs. Hyunsong Lee, and Pilim Choi are thanked for their expert assistance in the preparation of this manuscript. The International Vaccine Institute is supported by the governments of the Republic of Korea, Sweden, the Netherlands and Kuwait.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Czerkinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czerkinsky, C., Holmgren, J. (2010). Mucosal Delivery Routes for Optimal Immunization: Targeting Immunity to the Right Tissues. In: Kozlowski, P. (eds) Mucosal Vaccines. Current Topics in Microbiology and Immunology, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_112

Download citation

Publish with us

Policies and ethics