Skip to main content

Design of Small-Molecule Smac Mimetics as IAP Antagonists

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 348))

Abstract

Smac/DIABLO, discovered in 2000 as a protein released from mitochondria into the cytosol in response to apoptotic stimuli, functions as an endogenous antagonist of X-linked inhibitor of apoptosis protein (XIAP) and several other IAP proteins through direct binding. The interaction between Smac and IAPs involves the AVPI tetrapeptide binding motif on the N-terminus of Smac and a well-defined groove on the surface of these IAP proteins, providing an ideal site for the design of small-molecule Smac mimetics. Potent and cell-permeable small-molecule Smac mimetics have provided powerful pharmacological tools for study of the regulation of apoptosis by IAP proteins, and several such compounds are now in early clinical trials as new anticancer agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277:44236–44243

    Article  CAS  PubMed  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  CAS  PubMed  Google Scholar 

  • Bockbrader KM, Tan M, Sun Y (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24:7381–7388

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Shiozaki E, Srinivasula SM, Wu Q, Dataa P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades N, Richardson P, Zawel L, Tran M, Munshi N, Anderson KC (2007) Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Cheung HH, Mahoney DJ, Lacasse EC, Korneluk RG (2009) Down-regulation of c-FLIP enhances death of cancer cells by smac mimetic compound. Cancer Res 69:7729–7738

    Article  CAS  PubMed  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13:239–252

    Article  CAS  PubMed  Google Scholar 

  • Dougan M, Dougan S, Slisz J, Firestone B, Vanneman M, Draganov D, Goyal G, Li W, Neuberg D, Blumberg R, Hacohen N, Porter D, Zawel L, Dranoff G (2010) IAP inhibitors enhance co-stimulation to promote tumor immunity. J Exp Med. 207:2195–206

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell 102:33

    Article  CAS  PubMed  Google Scholar 

  • Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113:1710–1722

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

  • Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, Sage D, Slisz J, Tran M, Straub C, Ramsey T, Iourgenko V, Huang A, Chen Y, Schlegel R, Labow M, Fawell S, Sellers WR, Zawel L (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67:11493–11498

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Tian Y, Wang J, Yin Q, Wu H, Li YM, Jiang X (2007) A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J Biol Chem 282:30718–30727

    Article  CAS  PubMed  Google Scholar 

  • Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10:561–574

    Article  CAS  PubMed  Google Scholar 

  • Holcik M, Gibson H, Korneluk RG (2001) XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6:253–261

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104:781–790

    CAS  PubMed  Google Scholar 

  • Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278:49517–49522

    Article  CAS  PubMed  Google Scholar 

  • Infante JR, Dees EC, Burris III HA, Zawel L, Sager JA, Stevenson C, Clarke K, Dhuria S, Porter D, Sen SK, Zannou E, Sharma S, Cohen RB (2010) A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. In: Abstract # 2775, AACR 101st Annual Meeting 2010, 17–21 April 2010, Washington, DC

    Google Scholar 

  • Kipp RA, Case MA, Wist AD, Cresson CM, Carrell M, Griner E, Wiita A, Albiniak PA, Chai J, Shi Y, Semmelhack MF, McLendon GL (2002) Molecular targeting of inhibitors of apoptosis proteins based on small molecule mimics of natural binding partners. Biochemistry 41:7344–7349

    Article  CAS  PubMed  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305:1471–1474

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004

    Article  CAS  PubMed  Google Scholar 

  • Loeder S, Drensek A, Jeremias I, Debatin KM, Fulda S (2010) Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int J Cancer 126:2216–2228

    CAS  PubMed  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP1/2 and XIAP. Cancer Res 68:9384–9393

    Article  CAS  PubMed  Google Scholar 

  • Ndubaku C, Varfolomeev E, Wang L, Zobel K, Lau K, Elliott LO, Maurer B, Fedorova AV, Dynek JN, Koehler M, Hymowitz SG, Tsuis V, Deshayes K, Fairbrother WJ, Flygare JA, Vucic D (2009) Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists. ACS Chem Biol 4:557–566

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816

    Article  CAS  PubMed  Google Scholar 

  • Nikolovska-Coleska Z, Meagher JL, Jiang S, Yang C-Y, Qiu S, Roller PP, Stuckey JA, Wang S (2008) Interaction of a cyclic, bivalent Smac mimetic with the X-linked inhibitor of apoptosis protein. Biochemistry 47:9811–9824

    Article  CAS  PubMed  Google Scholar 

  • Oost TK, Sun C, Armstrong RC, Al-assaad AS, Bentz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47:4417

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Sun H, Nikolovska-Coleska Z, Qiu S, Yang C-Y, Lu J, Cai Q, Yi H, Wang S (2008) Design, synthesis and evaluation of potent and orally bioavailable diazabicyclic smac mimetics. J Med Chem 51:8158–8162

    Article  CAS  PubMed  Google Scholar 

  • Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456

    Article  CAS  PubMed  Google Scholar 

  • Ponder BA (2001) Cancer genetics. Nature 411:336–341

    Article  CAS  PubMed  Google Scholar 

  • Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L (2010) Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ 17:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800

    Article  CAS  PubMed  Google Scholar 

  • Salvesen GS, Duckett CS (2002) Apoptosis: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401

    Article  CAS  PubMed  Google Scholar 

  • Scott FL, Denault J-B, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24:645–655

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki EN, Shi Y (2004) Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 29:486–494

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula, SM, Ashwell, JD (2008) IAPs: what’s in a name? Mol. Cell. 30:123–135

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Nikolovska-Coleska Z, Yang C-Y, Xu L, Liu M, Tomita Y, Pan H, Yoshioka Y, Krajewski K, Roller PP, Wang S (2004a) Structure-based design of potent, conformationally constrained smac mimetics. J Am Chem Soc 126:16686

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Nikolovska-Coleska Z, Yang C-Y, Xu L, Tomita Y, Krajewski K, Roller PP, Wang S (2004b) Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J Med Chem 47:4147–4150

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Nikolovska-Coleska Z, Lu J, Qiu S, Yang C-Y, Gao W, Meagher J, Stuckey J, Wang S (2006) Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J Med Chem 49:7916–7920

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang C-Y, Qiu S, Tomita Y, Ueda Y, Jiang S, Krajewski K, Roller PP, Stuckey JA, Wang S (2007) Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129:15279–15294

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Stuckey JA, Nikolovska-Coleska Z, Qin D, Meagher JL, Qiu S, Lu J, Yang C-Y, Saito NG, Wang S (2008) Structure-based design, synthesis, evaluation and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J Med Chem 51:7169–7180

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Nikolovska-Coleska Z, Qin D, Sun H, Yang C-Y, Bai L, Qiu S, Ma D, Wang S (2009) Design, synthesis and evaluation of potent, non-peptidic Smac mimetics. J Med Chem 52: 593–596

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Lu J, Liu L, Yi H, Qiu S, Yang C-Y, Deschamps JR, Wang S (2010) Nonpeptidic and potent small-molecule inhibitors of cIAP-1/2 and XIAP proteins. J Med Chem 53:6361–6367

    Article  CAS  PubMed  Google Scholar 

  • Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6:1796–1803

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681

    Article  CAS  PubMed  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43

    Article  CAS  PubMed  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    Article  CAS  PubMed  Google Scholar 

  • Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Gschwend JE, Simmet T, Debatin KM, Fulda S (2008) Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68:7956–7965

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63:831–837

    CAS  PubMed  Google Scholar 

  • Zhang B, Nikolovska-Coleska Z, Zhang Y, Bai L, Qiu S, Yang C-Y, Sun H, Wang S, Yikang Wu Y (2008) J Med Chem 51:7352–7355

    Article  CAS  PubMed  Google Scholar 

  • Zobel K, Wang L, Varfolomeev E, Franklin MC, Elliott LO, Wallweber HJ, Okawa DC, Flygare JA, Vucic D, Fairbrother WJ, Deshayes K (2006) Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem Biol 1:525–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Breast Cancer Research Foundation, the Prostate Cancer Foundation, the Department of Defense Prostate Cancer Program (W81XWH-04-1-0213), Ascenta Therapeutics, and the National Cancer Institute, NIH (5R01CA109025 and 5R01CA127551). We thank Dr. G.W.A. Milne for his critical reading of the manuscript and Ms. Karen Kreutzer for her excellent secretarial assistance. The author thanks the present and past members of the Wang laboratory and all the collaborators, who have contributed to the design and evaluations of small-molecule Smac mimetics. The author is grateful for colleagues at Ascenta Therapeutics Inc. for advancing SM-406 (AT-406) into clinical development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, S. (2010). Design of Small-Molecule Smac Mimetics as IAP Antagonists. In: Vassilev, L., Fry, D. (eds) Small-Molecule Inhibitors of Protein-Protein Interactions. Current Topics in Microbiology and Immunology, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_111

Download citation

Publish with us

Policies and ethics