Skip to main content

Small-Molecule Inhibitors of the p53-MDM2 Interaction

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 348))

Abstract

The p53 tumor suppressor is controlled by MDM2, which binds p53 and negatively regulates its transcriptional activity and stability. Many tumors overproduce MDM2 to impair p53 function. Therefore, restoration of p53 activity by inhibiting the p53–MDM2 binding represents an attractive novel approach to cancer therapy. Recently developed potent and selective small-molecule antagonists of the p53–MDM2 interaction have been used to demonstrate the proof-of-concept for this approach. These compounds interact specifically with the p53-binding pocket of MDM2 and release p53 from negative control. Treatment of cancer cells expressing wild-type p53 stabilize p53 and activate the p53 pathway, leading to cell cycle arrest and apoptosis. In mice-bearing established human tumor xenografts, MDM2 antagonists caused tumor inhibition and regression at nontoxic concentrations, suggesting that they may have a therapeutic utility in the treatment of cancer. An increasing number of MDM2 antagonists are being generated and some of them have entered clinical trials. Here, we review this class of emerging drugs with an emphasis on small molecules that inhibit the p53–MDM2 interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  Google Scholar 

  • Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma Y-T, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338

    Article  CAS  PubMed  Google Scholar 

  • Agrafiotis DK (1997) Stochastic algorithms for maximizing molecular diversity. J Chem Inf Comput Sci 37:841–851

    CAS  Google Scholar 

  • Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW et al (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 52:7044–7053

    Article  CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Arts J, Blattner C, Kulikov RN, Valckx AF, Descamps S, Janssen C, Gerardus M, Schoentjes B (2008) Small molecule inhibitors of Hdm2-proteasome binding for use in therapy. PCT Int Appl WO2008132155

    Google Scholar 

  • Arts J, Smans K, Andries L, Floren W, King P, Van Nuffel L, Goris I, Goehlmann H, Rooney B et al (2009) Preclinical and clinical pharmacodynamic activity of JNJ-26854165: A novel hdm2 antagonist in clinical development. In: Proceedings of the 100th Annual Meeting of the American Association for Cancer Research; 2009 Apr 18–22; Denver, CO. Philadelphia (PA): AACR; 2009. Abstract nr 1924

    Google Scholar 

  • Batovska Daniela I, Todorova Iva T (2010) Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 5:1–29

    Article  PubMed  Google Scholar 

  • Boettcher A, Buschmann N, Furet P, Groell J-M, Kallen J, Hergovich Lisztwan J, Masuya K, Mayr L, Vaupel A (2008) 3-Imidazolylindoles for treatment of proliferative diseases and their preparation. PTC Int Appl WO2008119741

    Google Scholar 

  • Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    Article  CAS  PubMed  Google Scholar 

  • Bottger V, Bottger A, Howard SF, Picksley SM, Chene P, Garcia-Echeverria C, Hochkeppel HK, Lane DP (1996) Identification of novel mdm2 binding peptides by phage display. Oncogene 13:2141–2147

    CAS  PubMed  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269

    Article  CAS  PubMed  Google Scholar 

  • Burdack C, Burdack C, Kalinski C, Ross G, Weber L, Khazak V (2010) Pyrrolidin-2-ones as HDM2 ligands and their preparation and use in the treatment of cancer and viral infection. PCT Int Appl WO2010028862

    Google Scholar 

  • Chamoin S, Roth H-J, Zimmermann J, Zoller T (2008) Preparation of substituted dihydroimidazole derivatives for use as antitumor agents. PCT Int Appl WO2008065068

    Google Scholar 

  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ding Q, Liu J-J, Yang S, Zhang Z (2008) Preparation of spiroindolinone derivatives as antiproliferative and anticancer agents. US Patent Appl. Publ. US20080009486

    Google Scholar 

  • Clark RC, Lee SY, Searcey M, Boger DL (2009) The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-MDM2 protein-protein interaction. Nat Prod Rep 26:465–477

    Article  CAS  PubMed  Google Scholar 

  • Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller Peter P, Tomita Y et al (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127:10130–10131

    Article  CAS  PubMed  Google Scholar 

  • Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K et al (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Liu J-J, Zhang Z (2007) Preparation of spiroindolinone derivatives as antitumor agents. PCT Int Appl WO2007104714

    Google Scholar 

  • Ding Q, Jiang N, Yang S, Zhang J, Zhang Z (2009) Preparation of 2,3-dihydrospiro[indole-3,3′-piperidine]-2,6′-dione derivatives as anticancer agents. US Patent Appl. Publ. US20090156610

    Google Scholar 

  • Doemling A (2008) Selective and dual-action p53/mdm2/mdm4 antagonists. PCT Int Appl WO2008130614

    Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92

    Article  CAS  PubMed  Google Scholar 

  • Duncan SJ, Grueschow S, Williams DH, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley SK, Moore M (2001) Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123:554–560

    Article  CAS  PubMed  Google Scholar 

  • Duncan SJ, Cooper MA, Williams DH (2003) Binding of an inhibitor of the p53/MDM2 Interaction to MDM2. Chem Commun:316–317

    Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  • Fakharzadeh SS, Rosenblum-Vos L, Murphy M, Hoffman EK, George DL (1993) Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene. Genomics 15:283–290

    Article  CAS  PubMed  Google Scholar 

  • Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107

    Article  CAS  PubMed  Google Scholar 

  • Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F (2004) NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR 30:163–173

    Article  CAS  PubMed  Google Scholar 

  • Fry DC, Graves B, Vassilev LT (2005) Development of E3-substrate (MDM2-p53)-binding inhibitors: structural aspects. Methods Enzymol 399:622–633

    Article  CAS  PubMed  Google Scholar 

  • Galatin PS, Abraham DJ (2001) QSAR: hydropathic analysis of inhibitors of the p53-MDM2 interaction. Proteins 45:169–175

    Article  CAS  PubMed  Google Scholar 

  • Galatin PS, Abraham DJ (2004) A nonpeptidic sulfonamide inhibits the p53-MDM2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem 47:4163–4165

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Echeverria C, Chene P, Blommers MJJ, Furet P (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205–3208

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649

    CAS  PubMed  Google Scholar 

  • Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle IR, Ahmed SU, Atkins H, Calvert AH, Curtin NJ, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C et al (2005) Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. Bioorg Med Chem Lett 15:1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Kaellblad P, Kemp SJ et al (2006) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. J Med Chem 49:6209–6221

    Article  CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    Article  CAS  PubMed  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Janicke RU, Sohn D, Essmann F, Schulze-Osthoff K (2007) The multiple battles fought by anti-apoptotic p21. Cell Cycle 6:407–413

    Article  PubMed  Google Scholar 

  • Kawato H, Miyazaki M, Sugimoto Y, Naito H, Okayama T, Soga T, Uoto K (2008) Preparation of imidazothiazole derivatives as antitumor agents. PCT Int Appl WO2008072655

    Google Scholar 

  • Khan SR (2005) Boronic acid aryl analogs for the treatment of cancer. PCT Int Appl WO2005063774

    Google Scholar 

  • Kim K, Liu EA, Mischke SG (2004) Preparation of cis-3,4-dihydroxy-4-phenylpiperidine diethers as anticancer agents. US Patent Appl. Publ. US2004180929

    Google Scholar 

  • Koblish HK, Zhao S, Franks CF, Donatelli RR, Tominovich RM, LaFrance LV, Leonard KA, Gushue JM, Parks DJ, Calvo RR et al (2006) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 5:160–169

    Article  CAS  PubMed  Google Scholar 

  • Krajewski M, Ozdowy P, D'Silva L, Rothweiler U, Holak TA (2005) NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat Med 11:1135–1136

    Article  CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  CAS  PubMed  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Clark RC, Boger DL (2007) Total synthesis, stereochemical reassignment, and absolute configuration of chlorofusin. J Am Chem Soc 129:9860–9861

    Article  CAS  PubMed  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791

    Article  CAS  PubMed  Google Scholar 

  • Leonard K, Marugan JJ, Raboisson P, Calvo R, Gushue JM, Koblish HK, Lattanze J, Zhao S, Cummings MD, Player MR et al (2006) Novel 1, 4-benzodiazepine-2, 5-diones as Hdm2 antagonists with improved cellular activity. Bioorg Med Chem Lett 16:3463–3468

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Ljungman M (2000) Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2:208–225

    Article  CAS  PubMed  Google Scholar 

  • Luk K-C, So S-S, Zhang J, Zhang Z (2006) Preparation of oxindoles as inhibitors of MDM2-p53 interaction for the treatment of cancer. PCT Int Appl WO2006136606

    Google Scholar 

  • Luke, RWA, Hudson K, Hayward CF, Fielding CF, Cotton R, Best R, Giles MB, Veldma MH, Griffiths LA, Breeze AL, Embrey KJ (1999) Design and synthesis of small molecule inhibitors of the MDM2-p53 interaction as potential anti-tumor agents. In: Proceedings of the 90th Annual Meeting of the American Association for Cancer Research; 1999 Apr 14; Philadelphia, PA

    Google Scholar 

  • Luke RWA, Jewsbury PJ, Cotton R (2000) Preparation of amino acid and peptidyl piperazine-4-phenyl derivatives as inhibitors of the interaction between MDM2 and p53. PCT Int Appl. WO2000015657

    Google Scholar 

  • Ma Y, Lahue BR, Shipps GW, Wang Y, Bogen SL, Voss ME, Nair LG, Tian Y, Doll RJ, Guo Z et al (2008) Preparation of substituted piperidines that increase p53 activity and the uses thereof. US Patent Appl. Publ. US2008004287

    Google Scholar 

  • Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750–760

    Article  CAS  PubMed  Google Scholar 

  • Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934

    Article  CAS  PubMed  Google Scholar 

  • Michael D, Oren M (2003) The p53-MDM2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Neira W, Rivera MI, Kohlhagen G, Hursey ML, Pourquier P, Sausville EA, Pommier Y (1999) DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol Pharmacol 56:478–484

    CAS  PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  CAS  PubMed  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  CAS  PubMed  Google Scholar 

  • Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD et al (2005) 1, 4-Benzodiazepine-2, 5-diones as small molecule antagonists of the HDM2–p53 interaction: discovery and SAR. Bioorg Med Chem Lett 15:765–770

    Article  CAS  PubMed  Google Scholar 

  • Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Domling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–1111

    Article  CAS  Google Scholar 

  • Poyurovsky MV, Prives C (2006) Unleashing the power of p53: lessons from mice and men. Genes Dev 20:125–131

    Article  CAS  PubMed  Google Scholar 

  • Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME et al (2008) Analysis of chemical shift changes reveals the binding modes of isoindolinone inhibitors of the MDM2-p53 interaction. J Am Chem Soc 130:16038–16044

    Article  CAS  PubMed  Google Scholar 

  • Rivera MI, Stinson SF, Vistica DT, Jorden JL, Kenney S, Sausville EA (1999) Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem Pharmacol 57:1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Schubert C, Kahne D (2006) Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. J Am Chem Soc 128:11000–11001

    Article  CAS  PubMed  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller Rebecca S, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938

    Article  CAS  PubMed  Google Scholar 

  • Stoll R, Renner C, Hansen S, Palme S, Klein C, Belling A, Zeslawski W, Kamionka M, Rehm T, Muehlhahn P et al (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344

    Article  CAS  PubMed  Google Scholar 

  • Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279:53015–53022

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  • Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K et al (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A 103:1888–1893

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–421

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT (2005) p53 Activation by small molecules: application in oncology. J Med Chem 48:4491–4499

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2005) P53 and prognosis: new insights and further complexity. Cell 120:7–10

    CAS  PubMed  Google Scholar 

  • Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20:299–309

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Knezevic D, Vassilev LT (2010) p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation. Oncogene, doi: 10.1038/onc.2010.413

  • Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, Vassilev LT (2008) Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation. Cell Cycle 7:1604–1612

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ahmed A, Ashcroft M (2009) Activation of a unique p53-dependent DNA damage response. Cell Cycle 8:1630–1632

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Lee GI, Park HS, Payne GA, Rodriguez JM, Sebti SM, Hamilton AD (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 44:2704–2707

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vu, B.T., Vassilev, L. (2010). Small-Molecule Inhibitors of the p53-MDM2 Interaction. In: Vassilev, L., Fry, D. (eds) Small-Molecule Inhibitors of Protein-Protein Interactions. Current Topics in Microbiology and Immunology, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_110

Download citation

Publish with us

Policies and ethics