Skip to main content

NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 349))

Abstract

Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal K et al (2008) Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog 4(8):e1000120

    PubMed  Google Scholar 

  • Ahmad ST et al (2009) Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia. Proc Natl Acad Sci USA 106(29):12168–12173

    PubMed  Google Scholar 

  • Akimaru H et al (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nat Genet 17(2): 211–214

    PubMed  CAS  Google Scholar 

  • Anderson KV, Nusslein-Volhard C (1984) Information for the dorsal–ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311(5983):223–227

    PubMed  CAS  Google Scholar 

  • Apidianakis Y et al (2005) Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci USA 102(7):2573–2578

    PubMed  CAS  Google Scholar 

  • Baeuerle PA (1991) The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta 1072(1):63–80

    PubMed  CAS  Google Scholar 

  • Belvin MP et al (1995) Cactus protein degradation mediates Drosophila dorsal–ventral signaling. Genes Dev 9(7):783–793

    PubMed  CAS  Google Scholar 

  • Bergmann A et al (1996) A gradient of cytoplasmic cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev 60(1):109–123

    PubMed  CAS  Google Scholar 

  • Bianchi K, Meier P (2009) A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol Cell 36(5):736–742

    PubMed  CAS  Google Scholar 

  • Bischoff V et al (2004) Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 5(11):1175–1180

    PubMed  CAS  Google Scholar 

  • Bischoff V et al (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2(2):e14

    PubMed  Google Scholar 

  • Brown K et al (1995) Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267(5203):1485–1488

    PubMed  CAS  Google Scholar 

  • Buchon N et al (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci USA 106(30):12442–12447

    PubMed  CAS  Google Scholar 

  • Busse MS et al (2007) A kappaB sequence code for pathway-specific innate immune responses. Embo J 26(16):3826–3835

    PubMed  CAS  Google Scholar 

  • Chang CI et al (2004) A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity. PLoS Biol 2(9):E277

    PubMed  Google Scholar 

  • Chang CI et al (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci USA 102(29):10279–10284

    PubMed  CAS  Google Scholar 

  • Chang CI et al (2006) Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311(5768):1761–1764

    PubMed  CAS  Google Scholar 

  • Cho JH et al (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106(7):2551–2558

    PubMed  CAS  Google Scholar 

  • Choe KM et al (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296(5566):359–362

    PubMed  CAS  Google Scholar 

  • Choe KM et al (2005) Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci USA 102(4):1122–1126

    PubMed  CAS  Google Scholar 

  • Cornwell WD, Kirkpatrick RB (2001) Cactus-independent nuclear translocation of Drosophila RELISH. J Cell Biochem 82(1):22–37

    PubMed  CAS  Google Scholar 

  • Costa A et al (2009) The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS One 4(10):e7436

    PubMed  Google Scholar 

  • De Gregorio E et al (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98(22):12590–12595

    PubMed  Google Scholar 

  • De Gregorio E et al (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J 21(11):2568–2579

    PubMed  Google Scholar 

  • Dionne MS, Schneider DS (2008) Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis Model Mech 1(1):43–49

    PubMed  Google Scholar 

  • Dong Y et al (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4(7):e229

    PubMed  Google Scholar 

  • Dostert C et al (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6(9):946–953

    PubMed  CAS  Google Scholar 

  • Drier EA et al (1999) Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev 13(5):556–568

    PubMed  CAS  Google Scholar 

  • Drier EA et al (2000) Cactus-independent regulation of dorsal nuclear import by the ventral signal. Curr Biol 10(1):23–26

    PubMed  CAS  Google Scholar 

  • Dushay MS et al (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93(19):10343–10347

    PubMed  CAS  Google Scholar 

  • Ea CK et al (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22(2):245–257

    PubMed  CAS  Google Scholar 

  • Edwards DN et al (1997) An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124(19):3855–3864

    PubMed  CAS  Google Scholar 

  • El Chamy L et al (2008) Sensing of ‘danger signals’ and pathogen-associated molecular patterns defines binary signaling pathways ‘upstream’ of Toll. Nat Immunol 9(10):1165–1170

    PubMed  CAS  Google Scholar 

  • Enesa K et al (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283(11):7036–7045

    PubMed  CAS  Google Scholar 

  • Engstrom Y et al (1993) kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232(2):327–333

    PubMed  CAS  Google Scholar 

  • Erturk-Hasdemir D et al (2009) Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proc Natl Acad Sci USA 106(24):9779–9784

    PubMed  Google Scholar 

  • Evans PC et al (2001) Isolation and characterization of two novel A20-like proteins. Biochem J 357(Pt 3):617–623

    PubMed  CAS  Google Scholar 

  • Fernandez NQ et al (2001) Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128(15):2963–2974

    PubMed  CAS  Google Scholar 

  • Ferrandon D et al (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. Embo J 17(5):1217–1227

    PubMed  CAS  Google Scholar 

  • Filipe SR et al (2005) Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6(4):327–333

    PubMed  CAS  Google Scholar 

  • Foley E, O’Farrell PH (2004) Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol 2(8):E203

    PubMed  Google Scholar 

  • Friedman CS et al (2008) The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9(9):930–936

    PubMed  CAS  Google Scholar 

  • Galiana-Arnoux D et al (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7(6):590–597

    PubMed  CAS  Google Scholar 

  • Galindo RL et al (1995) Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121(7):2209–2218

    PubMed  CAS  Google Scholar 

  • Ganguly A et al (2005) Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132(15):3419–3429

    PubMed  CAS  Google Scholar 

  • Geisler R et al (1992) Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell 71(4):613–621

    PubMed  CAS  Google Scholar 

  • Georgel P et al (1993) Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements. Biochem Biophys Res Commun 197(2):508–517

    PubMed  CAS  Google Scholar 

  • Georgel P et al (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1(4):503–514

    PubMed  CAS  Google Scholar 

  • Ghosh S et al (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    PubMed  CAS  Google Scholar 

  • Gilchrist M et al (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441(7090):173–178

    PubMed  CAS  Google Scholar 

  • Gillespie SK, Wasserman SA (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol 14(6):3559–3568

    PubMed  CAS  Google Scholar 

  • Girardin SE et al (2002) Intracellular vs extracellular recognition of pathogens—common concepts in mammals and flies. Trends Microbiol 10(4):193–199

    PubMed  CAS  Google Scholar 

  • Gobert V et al (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302(5653):2126–2130

    PubMed  CAS  Google Scholar 

  • Gordon MD et al (2005) WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature 437(7059):746–749

    PubMed  CAS  Google Scholar 

  • Gordon MD et al (2008) Pathogenesis of listeria-infected Drosophila wntD mutants is associated with elevated levels of the novel immunity gene edin. PLoS Pathog 4(7):e1000111

    PubMed  Google Scholar 

  • Goto A et al (2008) Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in Drosophila and mice. Nat Immunol 9(1):97–104

    PubMed  CAS  Google Scholar 

  • Gottar M et al (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416(6881):640–644

    PubMed  CAS  Google Scholar 

  • Gottar M et al (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127(7):1425–1437

    PubMed  CAS  Google Scholar 

  • Govind S et al (1992) In vivo self-association of the Drosophila rel-protein dorsal. Proc Natl Acad Sci USA 89(17):7861–7865

    PubMed  CAS  Google Scholar 

  • Govind S et al (1996) Regulated nuclear import of the Drosophila rel protein dorsal: structure-function analysis. Mol Cell Biol 16(3):1103–1114

    PubMed  CAS  Google Scholar 

  • Gross I et al (1996) Drosophila immunity: a comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin. Nucleic Acids Res 24(7):1238–1245

    PubMed  CAS  Google Scholar 

  • Grosshans J et al (1994) Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo. Nature 372(6506):563–566.

    PubMed  CAS  Google Scholar 

  • Guntermann S et al (2009) Dnr1-dependent regulation of the Drosophila immune deficiency signaling pathway. Dev Comp Immunol 33(1):127–134

    PubMed  CAS  Google Scholar 

  • Han ZS, Ip YT (1999) Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J Biol Chem 274(30):21355–21361

    PubMed  CAS  Google Scholar 

  • Hashimoto C et al (2003) Spatial regulation of developmental signaling by a serpin. Dev Cell 5(6):945–950

    PubMed  CAS  Google Scholar 

  • Hedengren M et al (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4(5):827–837

    PubMed  CAS  Google Scholar 

  • Hedengren-Olcott M et al (2004) Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J Biol Chem 279(20):21121–21127

    PubMed  CAS  Google Scholar 

  • Hedges LM, Johnson KN (2008) Induction of host defence responses by Drosophila C virus. J Gen Virol 89(Pt 6):1497–1501

    PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3(2):121–126

    PubMed  CAS  Google Scholar 

  • Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96(5):645–653

    PubMed  CAS  Google Scholar 

  • Horng T, Medzhitov R (2001) Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci USA 98(22):12654–12658

    PubMed  CAS  Google Scholar 

  • Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem 275(40):30761–30764

    PubMed  CAS  Google Scholar 

  • Hu X et al (2004) Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci USA 101(25):9369–9374

    PubMed  CAS  Google Scholar 

  • Huguet C et al (1997) Rel/NF-kappa B transcription factors and I kappa B inhibitors: evolution from a unique common ancestor. Oncogene 15(24):2965–2974

    PubMed  CAS  Google Scholar 

  • Huh, J. R. et al (2007). "The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers." J Biol Chem 282(3): 2056-68

    PubMed  CAS  Google Scholar 

  • Ip YT et al (1992) Dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev 6(8):1518–1530

    PubMed  CAS  Google Scholar 

  • Ip YT et al (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75(4):753–763

    PubMed  CAS  Google Scholar 

  • Irving P et al (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 98(26):15119–15124

    PubMed  CAS  Google Scholar 

  • Isoda K, Nusslein-Volhard C (1994) Disulfide cross-linking in crude embryonic lysates reveals three complexes of the Drosophila morphogen dorsal and its inhibitor cactus. Proc Natl Acad Sci USA 91(12):5350–5354

    PubMed  CAS  Google Scholar 

  • Iwai K, Tokunaga F (2009) Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 10(7):706–713

    PubMed  CAS  Google Scholar 

  • Jang IH et al (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10(1):45–55

    PubMed  CAS  Google Scholar 

  • Jiang J et al (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev 5(10):1881–1891

    PubMed  CAS  Google Scholar 

  • Jin L et al (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133(4):653–665

    PubMed  CAS  Google Scholar 

  • Junell A et al (2007) Isolation of regulators of Drosophila immune defense genes by a double interaction screen in yeast. Insect Biochem Mol Biol 37(3):202–212

    PubMed  CAS  Google Scholar 

  • Kadalayil L et al (1997) Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res 25(6):1233–1239

    PubMed  CAS  Google Scholar 

  • Kambris Z et al (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr Biol 16(8):808–813

    PubMed  CAS  Google Scholar 

  • Kanayama A et al (2004) TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15(4):535–548

    PubMed  CAS  Google Scholar 

  • Kaneko T et al (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20(5):637–649

    PubMed  CAS  Google Scholar 

  • Kaneko T et al (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7(7):715–723

    PubMed  CAS  Google Scholar 

  • Kang D et al (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 95(17):10078–10082

    PubMed  CAS  Google Scholar 

  • Kappler C et al (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. Embo J 12(4):1561–1568

    PubMed  CAS  Google Scholar 

  • Kayagaki N et al (2007) DUBA: a deubiquitinase that regulates type I interferon production. Science 318(5856):1628–1632

    PubMed  CAS  Google Scholar 

  • Khush RS et al (2002) A ubiquitin-proteasome pathway represses the rosophila immune deficiency signaling cascade. Curr Biol 12(20):1728–1737

    PubMed  CAS  Google Scholar 

  • Kidd S (1992) Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71(4) 623–635

    PubMed  CAS  Google Scholar 

  • Kim YS et al (2000) Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 275(3):2071–2079

    PubMed  CAS  Google Scholar 

  • Kim MS et al (2003) Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 4(8):787–793

    PubMed  CAS  Google Scholar 

  • Kim T et al (2005) Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-kappaB signaling modules. Nat Immunol 6(2):211–218

    PubMed  CAS  Google Scholar 

  • Kim M et al (2006) Caspar, a suppressor of antibacterial immunity in Drosophila. Proc Natl Acad Sci USA 103(44):16358–16363

    PubMed  CAS  Google Scholar 

  • Kim LK et al (2007) Down-regulation of NF-kappaB target genes by the AP-1 and STAT complex during the innate immune response in Drosophila. PLoS Biol 5(9):e238

    PubMed  Google Scholar 

  • Kim CH et al (2008) A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an insect. J Biol Chem 283(12):7599–7607

    PubMed  CAS  Google Scholar 

  • Kirkpatrick DS et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8(7):700–710

    PubMed  CAS  Google Scholar 

  • Kleino A et al (2008) Pirk is a negative regulator of the Drosophila Imd pathway. J Immunol 180(8):5413–5422

    PubMed  CAS  Google Scholar 

  • Kuttenkeuler NP et al (2010) A large-scale RNAi screen identifies Deaf1 as a regulator of innate immune responses in Drosophila. J Innate Immun 2(2):181–194

    PubMed  CAS  Google Scholar 

  • Lamothe B et al (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282(6):4102–4112

    PubMed  CAS  Google Scholar 

  • Lemaitre B et al (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983

    PubMed  CAS  Google Scholar 

  • Lemaitre B et al (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94(26):14614–14619

    PubMed  CAS  Google Scholar 

  • Leone, P. et al (2008) Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Mol Immunol 45(9):2521-30

    PubMed  CAS  Google Scholar 

  • Leulier F et al (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1(4):353–358

    PubMed  CAS  Google Scholar 

  • Leulier F et al (2002) Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr Biol 12(12):996–1000

    PubMed  CAS  Google Scholar 

  • Leulier F et al (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4(5):478–484

    PubMed  CAS  Google Scholar 

  • Leung TH et al (2004) One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118(4):453–464

    PubMed  CAS  Google Scholar 

  • Levashina EA et al (1998) Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol 278(3):515–527

    PubMed  CAS  Google Scholar 

  • Levashina EA et al (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285(5435):1917–1919

    PubMed  CAS  Google Scholar 

  • Lhocine N et al (2008) PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4(2):147–158

    PubMed  CAS  Google Scholar 

  • Li H et al (2002) Induction and suppression of RNA silencing by an animal virus. Science 296(5571):1319–1321

    PubMed  CAS  Google Scholar 

  • Liang Y et al (2004) NF-kappaB and its regulation on the immune system. Cell Mol Immunol 1(5):343–350

    PubMed  CAS  Google Scholar 

  • Liehl P et al (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2(6):e56

    PubMed  Google Scholar 

  • Ligoxygakis P et al (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. Embo J 21(23):6330–6337

    PubMed  CAS  Google Scholar 

  • Ligoxygakis P et al (2003) A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr Biol 13(23):2097–2102

    PubMed  CAS  Google Scholar 

  • Lim JH et al (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281(12):286–295

    PubMed  CAS  Google Scholar 

  • Lin L et al (1998) Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 92(6):819–828

    PubMed  CAS  Google Scholar 

  • Lu Y et al (2001) The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev 15(1):104–110

    PubMed  CAS  Google Scholar 

  • Manfruelli P et al (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. Embo J 18(12): 3380–3391

    PubMed  CAS  Google Scholar 

  • Mansfield BE et al (2003) Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5(12):901–911

    PubMed  CAS  Google Scholar 

  • Matova N, Anderson KV (2006) Rel/NF-kappaB double mutants reveal that cellular immunity is central to Drosophila host defense. Proc Natl Acad Sci USA 103(44):16424–16429

    PubMed  CAS  Google Scholar 

  • Matova N, Anderson KV (2010) Drosophila Rel proteins are central regulators of a robust, multi-organ immune network. J Cell Sci 123(Pt 4):627–633

    PubMed  CAS  Google Scholar 

  • Mellroth P, Steiner H (2006) PGRP-SB1: an N-acetylmuramoyl l-alanine amidase with antibacterial activity. Biochem Biophys Res Commun 350(4):994–999

    PubMed  CAS  Google Scholar 

  • Mellroth P et al (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 278(9):7059–7064

    PubMed  CAS  Google Scholar 

  • Mellroth P et al (2005) Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc Natl Acad Sci USA 102(18):6455–6460

    PubMed  CAS  Google Scholar 

  • Meng X et al (1999) Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev 13(7):792–797

    PubMed  CAS  Google Scholar 

  • Merika M et al (1998) Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell 1(2):277–287

    PubMed  CAS  Google Scholar 

  • Meylan E et al (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5(5):503–507

    PubMed  CAS  Google Scholar 

  • Michel T et al (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414(6865):756–759

    PubMed  CAS  Google Scholar 

  • Minakhina S, Steward R (2006) Nuclear factor-kappa B pathways in Drosophila. Oncogene 25(51):6749–6757

    PubMed  CAS  Google Scholar 

  • Mizuguchi K et al (1998) Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem Sci 23(7):239–242

    PubMed  CAS  Google Scholar 

  • Naitza S et al (2002) The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17(5):575–581

    PubMed  CAS  Google Scholar 

  • Narasimamurthy R (2009) Structure-function analysis of Eiger, the Drosophila TNF homolog. Cell Res 19:392–394

    PubMed  CAS  Google Scholar 

  • Nicolas E et al (1998) In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J Biol Chem 273(17):10463–10469

    PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C et al (1987) Determination of anteroposterior polarity in Drosophila. Science 238(4834):1675–1681

    PubMed  CAS  Google Scholar 

  • Ochiai M, Ashida M (1999) A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J Biol Chem 274(17):11854–11858

    PubMed  CAS  Google Scholar 

  • Pan DJ et al (1991) Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes Dev 5(10):1892–1901

    PubMed  CAS  Google Scholar 

  • Paquette N et al (2010) Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling. Mol Cell 37(2):172–182

    PubMed  CAS  Google Scholar 

  • Park JM et al (2003) Signal-induced transcriptional activation by Dif requires the dTRAP80 mediator module. Mol Cell Biol 23(4):1358–1367

    PubMed  CAS  Google Scholar 

  • Park JM et al (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18(5):584–594

    PubMed  CAS  Google Scholar 

  • Park MY et al (2004) Fas-associated factor-1 inhibits nuclear factor-kappaB (NF-kappaB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-kappaB. J Biol Chem 279(4):2544–2549

    PubMed  CAS  Google Scholar 

  • Park JW et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci USA 104(16):6602–6607

    PubMed  CAS  Google Scholar 

  • Pelte N et al (2006) Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic. Insect Biochem Mol Biol 36(1):37–46

    PubMed  CAS  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62

    PubMed  CAS  Google Scholar 

  • Petersen UM et al (1999) Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. Embo J 18(14):4013–4022

    PubMed  CAS  Google Scholar 

  • Pham LN et al (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3(3):e26

    PubMed  Google Scholar 

  • Pili-Floury S et al (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279(13):12848–12853

    PubMed  CAS  Google Scholar 

  • Qin BY et al (2005) Crystal structure of IRF-3 in complex with CBP. Structure 13(9):1269–1277

    PubMed  CAS  Google Scholar 

  • Ramet M et al (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416(6881):644–648

    PubMed  CAS  Google Scholar 

  • Rao A et al (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    PubMed  CAS  Google Scholar 

  • Reach M et al (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol 180(1):353–364

    PubMed  CAS  Google Scholar 

  • Reed DE et al (2008) DEAF-1 regulates immunity gene expression in Drosophila. Proc Natl Acad Sci USA 105(24):8351–8356

    PubMed  CAS  Google Scholar 

  • Reiser JB et al (2004) Crystal structure of the Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 A resolution. J Mol Biol 340(4):909–917

    PubMed  CAS  Google Scholar 

  • Roth S et al (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59(6):1189–1202

    PubMed  CAS  Google Scholar 

  • Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5(4):264–277

    PubMed  CAS  Google Scholar 

  • Rutschmann S et al (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12(5):569–580

    PubMed  CAS  Google Scholar 

  • Rutschmann S et al (2000) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nat Immunol 1(4):342–347

    PubMed  CAS  Google Scholar 

  • Ryu JH et al (2004) The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol Cell Biol 24(1):172–185

    PubMed  CAS  Google Scholar 

  • Ryu JH et al (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319(5864):777–782

    PubMed  CAS  Google Scholar 

  • Sabatier L et al (2003) Pherokine-2 and -3. Eur J Biochem 270(16):3398–3407

    PubMed  CAS  Google Scholar 

  • Scherfer C et al (2008) Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation. Dev Biol 323(2):189–196

    PubMed  CAS  Google Scholar 

  • Schiffmann DA et al (1999) Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor. Biochemistry 38(36):11722–11733

    PubMed  CAS  Google Scholar 

  • Schleifer KH, O Kandler (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36(4):407–477

    PubMed  CAS  Google Scholar 

  • Schneider DS et al (2007) Drosophila eiger mutants are sensitive to extracellular pathogens. PLoS Pathog 3(3):e41

    PubMed  Google Scholar 

  • Schupbach T, Wieschaus E (1989) Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121(1):101–117

    PubMed  CAS  Google Scholar 

  • Scully LR, Bidochka MJ (2006) Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett 263(1):1–9

    PubMed  CAS  Google Scholar 

  • Senftleben U et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293(5534):1495–1499

    PubMed  CAS  Google Scholar 

  • Senger K et al (2004) Immunity regulatory DNAs share common organizational features in Drosophila. Mol Cell 13(1):19–32

    PubMed  CAS  Google Scholar 

  • Serfling E et al (2004) NFAT and NF-kappaB factors-the distant relatives. Int J Biochem Cell Biol 36(7):1166–1170

    PubMed  CAS  Google Scholar 

  • Shi Y (2002) A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9(2):93–95

    PubMed  CAS  Google Scholar 

  • Silverman N, Maniatis T (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15(18): 2321–2342

    PubMed  CAS  Google Scholar 

  • Silverman N et al (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14(19):2461–2471

    PubMed  CAS  Google Scholar 

  • Silverman N et al (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278(49):48928–48934

    PubMed  CAS  Google Scholar 

  • Spencer E et al (1999) Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 13(3):284–294

    PubMed  CAS  Google Scholar 

  • St Leger RJ et al (1992) Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem 204(3):991–1001

    PubMed  CAS  Google Scholar 

  • Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238(4827):692–694

    PubMed  CAS  Google Scholar 

  • Steward R (1989) Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59(6):1179–1188

    PubMed  CAS  Google Scholar 

  • Stoven S et al (2000) Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1(4):347–352

    PubMed  CAS  Google Scholar 

  • Stoven S et al (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci USA 100(10):5991–5996

    PubMed  CAS  Google Scholar 

  • Sun H et al (2002) A heterotrimeric death domain complex in Toll signaling. Proc Natl Acad Sci USA 99(20):12871–12876

    PubMed  CAS  Google Scholar 

  • Sun H et al (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. Embo J 23(1):100–110

    PubMed  CAS  Google Scholar 

  • Takehana A et al (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99(21):13705–13710

    PubMed  CAS  Google Scholar 

  • Takehana A et al (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. Embo J 23(23):4690–4700

    PubMed  CAS  Google Scholar 

  • Tang H et al (2008) A serpin that regulates immune melanization in the respiratory system of Drosophila. Dev Cell 15(4):617–626

    PubMed  CAS  Google Scholar 

  • Tanji T et al (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27(12):4578–4588

    PubMed  CAS  Google Scholar 

  • Tatei K, Levine M (1995) Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol Cell Biol 15(7):3627–3634

    PubMed  CAS  Google Scholar 

  • Tauszig-Delamasure S et al (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3(1):91–97

    PubMed  CAS  Google Scholar 

  • Thevenon D et al (2009) The Drosophila ubiquitin-specific protease dUSP36/Scny targets IMD to prevent constitutive immune signaling. Cell Host Microbe 6(4):309–320

    PubMed  CAS  Google Scholar 

  • Thisse C et al (1991) Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65(7):1191–1201

    PubMed  CAS  Google Scholar 

  • Towb P et al (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125(13):2443–2450

    PubMed  CAS  Google Scholar 

  • Traenckner EB et al (1995) Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. Embo J 14(12):2876–2883

    PubMed  CAS  Google Scholar 

  • Tsai CW et al (2008) Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus. Appl Environ Microbiol 74(10):3251–3256

    PubMed  CAS  Google Scholar 

  • Tsichritzis T et al (2007) A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense. Development 134(14):2605–2614

    PubMed  CAS  Google Scholar 

  • Tsuda M et al (2005) The RING-finger scaffold protein Plenty of SH3 s targets TAK1 to control immunity signalling in Drosophila. EMBO Rep 6(11):1082–1087

    PubMed  CAS  Google Scholar 

  • Tzou P et al (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13(5):737–748

    PubMed  CAS  Google Scholar 

  • Tzou P et al (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci USA 99(4):2152–2157

    PubMed  CAS  Google Scholar 

  • Uvell H, Engstrom Y (2003) Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol Cell Biol 23(22):8272–8281

    PubMed  CAS  Google Scholar 

  • Vanden Berghe W et al (1999) The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem 274(45):32091–32098

    Google Scholar 

  • Vidal S et al (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 15(15):1900–1912

    PubMed  CAS  Google Scholar 

  • Vonkavaara M et al (2008) Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell Microbiol 10(6):1327–1338

    PubMed  CAS  Google Scholar 

  • Wang L et al (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. Embo J 25(20):5005–5014

    PubMed  CAS  Google Scholar 

  • Wang XH et al (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312(5772):452–454

    PubMed  CAS  Google Scholar 

  • Watson FL et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309(5742):1874–1878

    PubMed  CAS  Google Scholar 

  • Weber AN et al (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4(8):794–800

    PubMed  CAS  Google Scholar 

  • Werner T et al (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97(25):13772–13777

    PubMed  CAS  Google Scholar 

  • Werner T et al (2003) Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem 278(29):26319–26322

    PubMed  CAS  Google Scholar 

  • Wertz IE et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430(7000):694–699

    PubMed  CAS  Google Scholar 

  • Whalen AM, Steward R (1993) Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J Cell Biol 123(3):523–534

    PubMed  CAS  Google Scholar 

  • Wiklund ML et al (2009) The N-terminal half of the Drosophila Rel/NF-kappaB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes. Dev Comp Immunol 33(5):690–696

    PubMed  CAS  Google Scholar 

  • Windheim M et al (2008) Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 409(3):723–729

    PubMed  CAS  Google Scholar 

  • Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283

    PubMed  CAS  Google Scholar 

  • Wu LP, Anderson KV (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392(6671):93–97

    PubMed  CAS  Google Scholar 

  • Xue L et al (2007) Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev Cell 13(3):446–454

    PubMed  CAS  Google Scholar 

  • Yagi Y, Ip YT (2005) Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Rep 6(11):1088–1094

    PubMed  CAS  Google Scholar 

  • Yano T et al (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9(8):908–916

    PubMed  CAS  Google Scholar 

  • Yoshida H et al (1986) Beta-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem Biophys Res Commun 141(3):1177–1184

    PubMed  CAS  Google Scholar 

  • Yoshida H et al (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271(23):3854–3860

    PubMed  CAS  Google Scholar 

  • Zaidman-Remy A et al (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24(4):463–473

    PubMed  CAS  Google Scholar 

  • Zambon RA et al (2005) The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci USA 102(20):7257–7262

    PubMed  CAS  Google Scholar 

  • Zambon RA et al (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8(5):880–889

    PubMed  CAS  Google Scholar 

  • Zhou R et al (2005) The role of ubiquitination in Drosophila innate immunity. J Biol Chem 280(40):34048–34055

    PubMed  CAS  Google Scholar 

  • Zhuang ZH et al (2006) Drosophila TAB 2 is required for the immune activation of JNK and NF-kappaB. Cell Signal 18(7):964–970

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Silverman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganesan, S., Aggarwal, K., Paquette, N., Silverman, N. (2010). NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster . In: Karin, M. (eds) NF-kB in Health and Disease. Current Topics in Microbiology and Immunology, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_107

Download citation

Publish with us

Policies and ethics