Skip to main content

NF-κB and Innate Immunity

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 349))

Abstract

Members of the NF-κB transcription factor family play a critical role in the development of innate immunity. Upon recognition of pathogen infections or tissue damage, the NF-κB pathway is strongly activated by cellular pattern recognition receptors, including Toll-like receptors and multiple cytosolic receptors such as RIG-I-like helicases and NOD family proteins. NF-κB is required not only for the expression, but also for subsequent signal transduction of numerous downstream cytokines. NF-κB-responsive genes affect a diverse array of cellular processes including apoptosis and cell survival, and often directly control the course of a pathogen infection. In this review, we will examine signaling pathways leading to NF-κB activation during the innate immune response and mechanisms of pathogen-modulation of these pathways; the specifics of NF-κB-dependent gene programs, and the physiological consequences for the immune system caused by the absence of individual NF-κB subunits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PRR:

Pattern recognition receptor

PAMP:

Pathogen associated molecular pattern

TLR:

Toll-like receptor

RLR:

RIG-I-like receptor

NLR:

NOD-like receptor

IFN:

Interferon

IFNAR:

Interferon α/β receptor

NF-κB:

Nuclear factor-kappaB

LPS:

Lipopolysaccharide

TIR:

Toll/IL-1R

TRIF:

TIR domain-containing adaptor gene inducing IFN-β

MyD88:

Myeloid differentiation primary response gene 88

MAPK:

Mitogen activated protein kinase

TNF:

Tumor necrosis factor

TRAF:

TNF receptor-associated factor

TIRAP:

TIR-domain containing adaptor protein

IRAK:

IL-1 receptor associated kinase

TAK1:

Transforming growth factor-activated protein kinase 1

IKK:

ikappaB kinase

IRF:

Interferon regulatory factor

Poly(I:C):

Polyinosinic:polycytidylic acid

RIP:

Receptor interacting protein

RHIM:

RIP homotypic interaction motif

IL:

Interleukin

TANK:

TRAF-family member-associated NF-κB activator

TBK1:

TANK-binding kinase-1

VSV:

Vesicular stomatitis virus

ISRE:

Interferon stimulated response element

RIG-I:

Retinoic acid inducible gene-I

pDC:

Plasmacytoid dendritic cell

NIK:

NF-κB inducing kinase

PI-3K:

Phosphatidylinositol 3-kinase

NDV:

Newcastle disease virus

CARD:

Caspase recruitment domain

Mda5:

Melanoma differentiation-associated gene 5

FADD:

Fas-associated protein with death domain

DAI:

DNA-dependent activator of IFN-regulatory factors

ZBP-1:

Z-DNA binding protein-1

NOD:

Nucleotide-binding oligomerization domain

HIV-1:

Human immunodeficiency virus-1

LTR:

Long terminal repeat

HSV-1:

Herpes simplex virus-1

ASFV:

African swine flu virus

Th1:

Type I helper T cell

PRD:

Positive regulatory domain

References

  • Abbott DW, Wilkins A, Asara JM, Cantley LC (2004) The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 14: 2217–2227

    PubMed  CAS  Google Scholar 

  • Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10: 1065–1072

    PubMed  CAS  Google Scholar 

  • Agarwal S, Rao A (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9:765–775

    PubMed  CAS  Google Scholar 

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T et al (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103:667–678

    Google Scholar 

  • Amici C, Rossi A, Costanzo A, Ciafrè S, Marinari B et al (2006) Herpes simplex virus disrupts NF-kappaB regulation by blocking its recruitment on the IkappaBalpha promoter and directing the factor on viral genes. J Biol Chem 281:7110–7117

    PubMed  CAS  Google Scholar 

  • Balachandran S, Thomas E, Barber GN (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432:401–405

    PubMed  CAS  Google Scholar 

  • Beeson PB (1947) Tolerance to bacterial pyrogens: I. Factors influencing its development. J Exp Med 86:29–38

    CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450

    PubMed  CAS  Google Scholar 

  • Berkowitz B, Huang D, Chen-Park FE, Sigler PB, Ghosh G (2002) The x-ray crystal structure of the NF-kappa B p50.p65 heterodimer bound to the interferon beta-kappa B site. J Biol Chem 277:24694–24700

    CAS  Google Scholar 

  • Bertin J, Nir WJ, Fischer CM, Tayber OV, Errada PR et al (1999) Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 274:12955–12958

    PubMed  CAS  Google Scholar 

  • Boone DL, Turer EE, Lee EG, Ahmad R, Wheeler MT et al (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5:1052–1060

    PubMed  CAS  Google Scholar 

  • Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C et al (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2:346–351

    PubMed  CAS  Google Scholar 

  • Caamaño J, Alexander J, Craig L, Bravo R, Hunter CA (1999) The NF-kappa B family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J Immunol 163:4453–4461

    PubMed  Google Scholar 

  • Caamaño J, Tato C, Cai G, Villegas EN, Speirs K et al (2000) Identification of a role for NF-kappa B2 in the regulation of apoptosis and in maintenance of T cell-mediated immunity to Toxoplasma gondii. J Immunol 165:5720–5728

    PubMed  Google Scholar 

  • Carmody RJ, Chen YH (2007) Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 4:31–41

    PubMed  CAS  Google Scholar 

  • Chariot A, Leonardi A, Muller J, Bonif M, Brown K et al (2002) Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J Biol Chem 277:37029–37036

    PubMed  CAS  Google Scholar 

  • Cheong R, Bergmann A, Werner SL, Regal J, Hoffmann A et al (2006) Transient IkappaB kinase activity mediates temporal NF-kappaB dynamics in response to a wide range of tumor necrosis factor-alpha doses. J Biol Chem 281:2945–2950

    PubMed  CAS  Google Scholar 

  • Chiu Y, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–591

    PubMed  CAS  Google Scholar 

  • Creagh EM, O’Neill LAJ (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    PubMed  CAS  Google Scholar 

  • Dennis A, Kudo T, Kruidenier L, Girard F, Crepin VF et al (2008) The p50 subunit of NF-kappaB is critical for in vivo clearance of the noninvasive enteric pathogen Citrobacter rodentium. Infect Immun 76:4978–4988

    PubMed  CAS  Google Scholar 

  • Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4:903–914

    PubMed  CAS  Google Scholar 

  • Doi TS, Takahashi T, Taguchi O, Azuma T, Obata Y (1997) NF-kappa B RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J Exp Med 185:953–961

    PubMed  CAS  Google Scholar 

  • Du Z, Wei L, Murti A, Pfeffer SR, Fan M et al (2007) Non-conventional signal transduction by type 1 interferons: the NF-kappaB pathway. J Cell Biochem 102:1087–1094

    PubMed  CAS  Google Scholar 

  • El Gazzar M, Yoza BK, Hu JY, Cousart SL, McCall CE (2007) Epigenetic silencing of tumor necrosis factor alpha during endotoxin tolerance. J Biol Chem 282:26857–26864

    PubMed  CAS  Google Scholar 

  • Ellwood K, Chi T, Huang W, Mitsouras K, Carey M (1998) Cooperative assembly of RNA polymerase II transcription complexes. Cold Spring Harb Symp Quant Biol 63:253–261

    PubMed  CAS  Google Scholar 

  • Escalante CR, Shen L, Thanos D, Aggarwal AK (2002) Structure of NF-kappaB p50/p65 heterodimer bound to the PRDII DNA element from the interferon-beta promoter. Structure 10:383–391

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E et al (2003a) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A et al (2003b) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055

    PubMed  CAS  Google Scholar 

  • Franchi L, Warner N, Viani K, Nuñez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128

    PubMed  CAS  Google Scholar 

  • Franzoso G, Carlson L, Poljak L, Shores EW, Epstein S et al (1998) Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 187:147–159

    PubMed  CAS  Google Scholar 

  • Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848

    PubMed  CAS  Google Scholar 

  • Ghosh G, van Duyne G, Ghosh S, Sigler PB (1995) Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373:303–310

    PubMed  CAS  Google Scholar 

  • Grigoriadis G, Zhan Y, Grumont RJ, Metcalf D, Handman E et al (1996) The Rel subunit of NF-kappaB-like transcription factors is a positive and negative regulator of macrophage gene expression: distinct roles for Rel in different macrophage populations. EMBO J 15:7099–7107

    PubMed  CAS  Google Scholar 

  • Guo B, Cheng G (2007) Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282:11817–11826

    PubMed  CAS  Google Scholar 

  • Häcker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006:re13

    Google Scholar 

  • Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu L et al (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204–207

    PubMed  Google Scholar 

  • Harling-McNabb L, Deliyannis G, Jackson DC, Gerondakis S, Grigoriadis G et al (1999) Mice lacking the transcription factor subunit Rel can clear an influenza infection and have functional anti-viral cytotoxic T cells but do not develop an optimal antibody response. Int Immunol 11:1431–1439

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K et al (2008) A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27:373–383

    PubMed  CAS  Google Scholar 

  • Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780

    PubMed  CAS  Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J 13:1823–1830

    PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T et al (2004) The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199:1641–1650

    PubMed  CAS  Google Scholar 

  • Henricson BE, Neta R, Vogel SN (1991) An interleukin-1 receptor antagonist blocks lipopolysaccharide-induced colony-stimulating factor production and early endotoxin tolerance. Infect Immun 59:1188–1191

    PubMed  CAS  Google Scholar 

  • Hiscott J, Kwon H, Génin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107:143–151

    PubMed  CAS  Google Scholar 

  • Hiscott J, Nguyen TA, Arguello M, Nakhaei P, Paz S (2006) Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 25:6844–6867

    PubMed  CAS  Google Scholar 

  • Hitotsumatsu O, Ahmad R, Tavares R, Wang M, Philpott D et al (2008) The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28:381–390

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186

    PubMed  Google Scholar 

  • Hoffmann A, Leung TH, Baltimore D (2003) Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J 22:5530–5539

    PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Flavell RA, Medzhitov R (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420:329–333

    PubMed  CAS  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    PubMed  Google Scholar 

  • Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M et al (2006) IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440:949–953

    PubMed  CAS  Google Scholar 

  • Inohara N, Koseki T, Lin J, del Peso L, Lucas PC et al (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275:27823–27831

    PubMed  CAS  Google Scholar 

  • Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y et al (2006) A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7:40–48

    PubMed  CAS  Google Scholar 

  • Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H et al (2008) TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725–729

    PubMed  CAS  Google Scholar 

  • Ishikawa H, Claudio E, Dambach D, Raventos-Suarez C, Ryan C et al (1998) chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-{kappa}B1) but expressing p50. J Exp Med 187:985–996

    PubMed  CAS  Google Scholar 

  • Kaiser WJ, Upton JW, Mocarski ES (2008) Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol 181:6427–6434

    PubMed  CAS  Google Scholar 

  • Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S et al (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469

    PubMed  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988

    PubMed  CAS  Google Scholar 

  • Kelly BL, Locksley RM (2000) Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns. J Immunol 165:2982–2986

    PubMed  CAS  Google Scholar 

  • Kim TK, Maniatis T (1997) The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol Cell 1:119–129

    PubMed  CAS  Google Scholar 

  • Kim JI, Ho IC, Grusby MJ, Glimcher LH (1999) The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10:745–751

    PubMed  CAS  Google Scholar 

  • Kim SG, Kim JS, Kim JM, Chae Jung H, Sung Song I (2005) Inhibition of proinflammatory cytokine expression by NF-kappaB (p65) antisense oligonucleotide in Helicobacter pylori-infected mice. Helicobacter 10:559–566

    PubMed  CAS  Google Scholar 

  • Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8(Suppl 2):S2

    Google Scholar 

  • Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T et al (2009) TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS ONE 4:e5674

    PubMed  Google Scholar 

  • Kubo M, Ransom J, Webb D, Hashimoto Y, Tada T et al (1997) T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. EMBO J 16:4007–4020

    PubMed  CAS  Google Scholar 

  • Kwon H, Pelletier N, DeLuca C, Genin P, Cisternas S et al (1998) Inducible expression of IkappaBalpha repressor mutants interferes with NF-kappaB activity and HIV-1 replication in Jurkat T cells. J Biol Chem 273:7431–7440

    PubMed  CAS  Google Scholar 

  • Lavon I, Goldberg I, Amit S, Landsman L, Jung S et al (2000) High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-kappaB activation. Nat Med 6:573–577

    PubMed  CAS  Google Scholar 

  • Lawrence T, Bebien M, Liu GY, Nizet V, Karin M (2005) IKK[alpha] limits macrophage NF-[kappa]B activation and contributes to the resolution of inflammation. Nature 434:1138–1143

    PubMed  CAS  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354

    PubMed  CAS  Google Scholar 

  • Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E et al (2006) Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281:2095–2103

    PubMed  CAS  Google Scholar 

  • Liou HC, Sha WC, Scott ML, Baltimore D (1994) Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol Cell Biol 14:5349–5359

    PubMed  CAS  Google Scholar 

  • Mansell A, Smith R, Doyle SL, Gray P, Fenner JE et al (2006) Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7:148–155

    PubMed  CAS  Google Scholar 

  • Mason N, Aliberti J, Caamano JC, Liou H, Hunter CA (2002) Cutting edge: identification of c-Rel-dependent and -independent pathways of IL-12 production during infectious and inflammatory stimuli. J Immunol 168:2590–2594

    PubMed  CAS  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT et al (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101:233–238

    PubMed  CAS  Google Scholar 

  • Merika M, Thanos D (2001) Enhanceosomes. Curr Opin Genet Dev 11: 205–208

    PubMed  CAS  Google Scholar 

  • Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F et al (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507

    PubMed  CAS  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172

    PubMed  CAS  Google Scholar 

  • Mise-Omata S, Kuroda E, Sugiura T, Yamashita U, Obata Y et al (2009) The NF-kappaB RelA subunit confers resistance to Leishmania major by inducing nitric oxide synthase 2 and Fas expression but not Th1 differentiation. J Immunol 182:4910–4916

    PubMed  CAS  Google Scholar 

  • Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273 (Table of Contents)

    Google Scholar 

  • Munshi N, Yie Y, Merika M, Senger K, Lomvardas S et al (1999) The IFN-beta enhancer: a paradigm for understanding activation and repression of inducible gene expression. Cold Spring Harb Symp Quant Biol 64:149–159

    PubMed  CAS  Google Scholar 

  • Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713

    PubMed  CAS  Google Scholar 

  • Nenci A, Becker C, Wullaert A, Gareus R, van Loo G et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–561

    PubMed  CAS  Google Scholar 

  • O’Donnell SM, Hansberger MW, Connolly JL, Chappell JD, Watson MJ et al (2005) Organ-specific roles for transcription factor NF-kappaB in reovirus-induced apoptosis and disease. J Clin Invest 115:2341–2350

    PubMed  Google Scholar 

  • Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A et al (2006) Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208–211

    PubMed  CAS  Google Scholar 

  • Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S et al (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818

    PubMed  CAS  Google Scholar 

  • Panne D, Maniatis T, Harrison SC (2004) Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. EMBO J 23:4384–4393

    PubMed  CAS  Google Scholar 

  • Panne D, Maniatis T, Harrison SC (2007) An atomic model of the interferon-beta enhanceosome. Cell 129:1111–1123

    PubMed  CAS  Google Scholar 

  • Patel A, Hanson J, McLean TI, Olgiate J, Hilton M et al (1998) Herpes simplex type 1 induction of persistent NF-kappa B nuclear translocation increases the efficiency of virus replication. Virology 247:212–222

    PubMed  CAS  Google Scholar 

  • Perry AK, Chow EK, Goodnough JB, Yeh W, Cheng G (2004) Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199:1651–1658

    PubMed  CAS  Google Scholar 

  • Peters RT, Maniatis T (2001) A new family of IKK-related kinases may function as I kappa B kinase kinases. Biochim Biophys Acta 1471:M57–M62

    PubMed  CAS  Google Scholar 

  • Ramirez-Carrozzi VR, Nazarian AA, Li CC, Gore SL, Sridharan R et al (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev 20:282–296

    Google Scholar 

  • Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C et al (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138:114–128

    PubMed  CAS  Google Scholar 

  • Rebsamen M, Heinz LX, Meylan E, Michallet M, Schroder K et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10:916–922

    PubMed  CAS  Google Scholar 

  • Riggs AD, Pfeifer GP (1992) X-chromosome inactivation and cell memory. Trends Genet 8:169–174

    PubMed  CAS  Google Scholar 

  • Rodríguez CI, Nogal ML, Carrascosa AL, Salas ML, Fresno M et al (2002) African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. J Virol 76:3936–3942

    PubMed  Google Scholar 

  • Rong BL, Libermann TA, Kogawa K, Ghosh S, Cao LX et al (1992) HSV-1-inducible proteins bind to NF-kappa B-like sites in the HSV-1 genome. Virology 189:750–756

    PubMed  CAS  Google Scholar 

  • Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    PubMed  CAS  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2003) Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 11:1563–1574

    PubMed  CAS  Google Scholar 

  • Sadikot RT, Zeng H, Joo M, Everhart MB, Sherrill TP et al (2006) Targeted immunomodulation of the NF-kappaB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J Immunol 176:4923–4930

    PubMed  CAS  Google Scholar 

  • Saha SK, Pietras EM, He JQ, Kang JR, Liu S et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25:3257–3263

    PubMed  CAS  Google Scholar 

  • Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST (2000) Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci USA 97:12705–12710

    PubMed  CAS  Google Scholar 

  • Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T et al (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310

    Google Scholar 

  • Scheidereit C (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25:6685–6705

    PubMed  CAS  Google Scholar 

  • Schübeler D, Francastel C, Cimbora DM, Reik A, Martin DI et al (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14:940–950.

    PubMed  Google Scholar 

  • Schwarz EM, Badorff C, Hiura TS, Wessely R, Badorff A et al (1998) NF-kappaB-mediated inhibition of apoptosis is required for encephalomyocarditis virus virulence: a mechanism of resistance in p50 knockout mice. J Virol 72:5654–5660

    PubMed  CAS  Google Scholar 

  • Seth RB, Sun L, Ea C, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682

    PubMed  CAS  Google Scholar 

  • Sha WC, Liou HC, Tuomanen EI, Baltimore D (1995) Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80:321–330

    PubMed  CAS  Google Scholar 

  • Sharma S, TenOever BR, Grandvaux N, Zhou G, Lin R et al (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151

    PubMed  CAS  Google Scholar 

  • Speirs K, Caamano J, Goldschmidt MH, Hunter CA, Scott P (2002) NF-{kappa}B2 is required for optimal CD40-induced IL-12 production but dispensable for Th1 cell differentiation. J Immunol 168:4406–4413

    PubMed  CAS  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103

    PubMed  CAS  Google Scholar 

  • Tait SW, Reid EB, Greaves DR, Wileman TE, Powell PP (2000) Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-induced release of I kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem 275:34656–34664

    PubMed  CAS  Google Scholar 

  • Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–505

    PubMed  CAS  Google Scholar 

  • Takemoto N, Koyano-Nakagawa N, Yokota T, Arai N, Miyatake S et al (1998) Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int Immunol 10:1981–1985

    PubMed  CAS  Google Scholar 

  • Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100

    PubMed  CAS  Google Scholar 

  • Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ et al (2009) MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 284:24192–24203

    PubMed  CAS  Google Scholar 

  • Wang Y, Rickman BH, Poutahidis T, Schlieper K, Jackson EA et al (2008) c-Rel is essential for the development of innate and T cell-induced colitis. J Immunol 180:8118–8125

    PubMed  CAS  Google Scholar 

  • Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA et al (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80:331–340

    PubMed  CAS  Google Scholar 

  • Weih F, Warr G, Yang H, Bravo R (1997) Multifocal defects in immune responses in RelB-deficient mice. J Immunol 158:5211–5218

    PubMed  CAS  Google Scholar 

  • Weinmann AS, Mitchell DM, Sanjabi S, Bradley MN, Hoffmann A et al (2001) Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat Immunol 2:51–57

    PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193:848–856

    PubMed  CAS  Google Scholar 

  • Werner SL, Barken D, Hoffmann A (2005) Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309:1857–1861

    PubMed  CAS  Google Scholar 

  • Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699

    PubMed  CAS  Google Scholar 

  • Wessells J, Baer M, Young HA, Claudio E, Brown K et al (2004) BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J Biol Chem 279:49995–50003

    PubMed  CAS  Google Scholar 

  • Williams SA, Kwon H, Chen L, Greene WC (2007) Sustained induction of NF-kappa B is required for efficient expression of latent human immunodeficiency virus type 1. J Virol 81:6043–6056

    PubMed  CAS  Google Scholar 

  • Wu C, Wong YC, Elgin SC (1979) The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16:807–814

    PubMed  CAS  Google Scholar 

  • Xu L, Wang Y, Han K, Li L, Zhai Z et al (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727–740

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S et al (2002a) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O et al (2002b) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H et al (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430:218–222

    PubMed  CAS  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R et al (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240

    PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    PubMed  CAS  Google Scholar 

  • Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ et al (2007) Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446:552–556

    PubMed  CAS  Google Scholar 

  • Zaragoza C, Saura M, Padalko EY, Lopez-Rivera E, Lizarbe TR et al (2006) Viral protease cleavage of inhibitor of kappaBalpha triggers host cell apoptosis. Proc Natl Acad Sci USA 103:19051–19056

    PubMed  CAS  Google Scholar 

  • Zhang G, Ghosh S (2002) Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 277:7059–7065

    PubMed  CAS  Google Scholar 

  • Zhao T, Yang L, Sun Q, Arguello M, Ballard DW et al (2007) The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 8:592–600

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genhong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dev, A., Iyer, S., Razani, B., Cheng, G. (2010). NF-κB and Innate Immunity. In: Karin, M. (eds) NF-kB in Health and Disease. Current Topics in Microbiology and Immunology, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_102

Download citation

Publish with us

Policies and ethics