Skip to main content

The Varicella-Zoster Virus Genome

  • Chapter
  • First Online:
Varicella-zoster Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 342))

Abstract

The varicella-zoster virus (VZV) genome contains at least 70 genes, and all but six have homologs in herpes simplex virus (HSV). Cosmids and BACs corresponding to the VZV parental Oka and vaccine Oka viruses have been used to “knockout” 34 VZV genes. Seven VZV genes (ORF4, 5, 9, 21, 29, 62, and 68) have been shown to be required for growth in vitro. Recombinant viruses expressing several markers (e.g., beta-galactosidase, green fluorescence protein, luciferase) and several foreign viral genes (from herpes simplex, Epstein–Barr virus, hepatitis B, mumps, HIV, and simian immunodeficiency virus) have been constructed. Further studies of the VZV genome, using recombinant viruses, may facilitate the development of safer and more effective VZV vaccines. Furthermore, VZV might be useful as a vaccine vector to immunize against both VZV and other viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HSV:

Herpes simplex virus

IE:

Immediate-early

IRL:

Internal repeat long

IRS:

Internal repeat short

TRL:

Terminal repeat long

TRS:

Terminal repeat short

UL:

Unique long

US:

Unique short

VZV:

Varicella-zoster virus

References

  • Ali MA, Li Q, Fischer ER, Cohen JI (2009) The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection. Virology 386:270–279

    Article  PubMed  CAS  Google Scholar 

  • Ambagala AP, Cohen JI (2007) Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 81:7844–7851

    Article  PubMed  CAS  Google Scholar 

  • Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, Gershon MD, Adams PD, Cohen JI (2009) Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones H3.1 and H3.3. J Virol 83:200–209

    Article  PubMed  CAS  Google Scholar 

  • Baiker A, Bagowski C, Ito H, Sommer M, Zerboni L, Fabel K, Hay J, Ruyechan W, Arvin AM (2004) The immediate-early 63 protein of varicella-zoster virus: analysis of functional domains required for replication in vitro and for T-cell and skin tropism in the SCIDhu model in vivo. J Virol 78:1181–1194

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri V, Sommer M, Rajamani J, Zerboni L, Arvin AM (2008) Functions of varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection. J Virol 82:10231–10246

    Article  PubMed  CAS  Google Scholar 

  • Che X, Reichelt M, Sommer MH, Rajamani J, Zerboni L, Arvin AM (2008) Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection. J Virol 82:5825–5834

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Stabell EC, Olivio PD (1995) Varicella-zoster virus gene 51 complements a herpes simplex virus type I UL9 mutant. J Virol 69:4515–4518

    PubMed  CAS  Google Scholar 

  • Cohen JI (1999) Genomic structure and organization of varicella-zoster virus. Contrib Microbiol 3:10–20

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Nguyen H (1997) Varicella-zoster virus glycoprotein I (gI) is essential for growth of virus in vero cells. J Virol 71:6913–6920

    PubMed  CAS  Google Scholar 

  • Cohen JI, Nguyen H (1998) Varicella-zoster virus ORF61 deletion mutants replicate in cell culture, but a mutant with stop codons in ORF61 reverts to wild-type virus. Virology 246:306–316

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Seidel KE (1993) Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci USA 90:7376–7380

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Seidel KE (1994a) Absence of varicella-zoster virus (VZV) glycoprotein V does not alter growth of VZV in vitro or sensitivity to heparin. J Gen Virol 75:3087–3093

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Seidel KE (1994b) Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro. J Virol 68:7850–7858

    PubMed  CAS  Google Scholar 

  • Cohen JI, Seidel KE (1995) Varicella-zoster virus open reading frame 1 encodes a membrane protein that is dispensable for growth of VZV in vitro. Virology 206:835–842

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Wang Y, Nussenblatt R, Straus SE, Hooks JJ (1998) Chronic uveitis in guinea pigs infected with varicella-zoster virus expressing Escherichia coli beta-galactosidase. J Infect Dis 177:293–300

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Sato H, Srinivas S, Lekstrom K (2001) The varicella-zoster virus (VZV) ORF65 virion protein is dispensable for replication in cell culture and is phosphorylated by casein kinase II, but not by the VZV protein kinases. Virology 280:62–71

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Cox E, Pesnicak L, Srinivas S, Krogmann T (2004) The varicella-zoster virus ORF63 latency-associated protein is critical for establishment of latency. J Virol 78:11833–11840

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Krogmann T, Ross JP, Pesnicak LP, Prikhod’ko EA (2005) The varicella-zoster virus ORF4 latency associated protein is important for establishment of latency. J Virol 79:6969–6975

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Krogmann T, Pesnicak L, Ali MA (2007a) Absence or overexpression of the varicella-zoster virus (VZV) ORF29 latency-associated protein impairs late gene expression and reduces latency in a rodent model. J Virol 81:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Straus SE, Arvin AM (2007b) Varicella-zoster virus: replication, pathogenesis, and management. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  • Cox E, Reddy S, Iofin I, Cohen J (1998) Varicella-zoster virus ORF57, unlike its pseudorabies virus UL3.5 homolog, is dispensable for replication in cell culture. Virology 250:205–209

    Article  PubMed  CAS  Google Scholar 

  • Davison AJ (1993) Herpesvirus genes. Rev Med Virol 3:237–244

    Article  CAS  Google Scholar 

  • Davison AJ, Scott J (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816

    Article  PubMed  CAS  Google Scholar 

  • Felser JM, Kinchington PR, Inchauspe G, Straus SE, Ostrove JM (1988) Cell lines containing varicella-zoster virus open reading frame 62 and expressing the “IE” 175 protein complement ICP4 mutants of herpes simplex virus type 1. J Virol 62:2076–2082

    PubMed  CAS  Google Scholar 

  • Heineman TC, Cohen JI (1994) Deletion of the varicella-zoster virus large subunit of ribonucleotide reductase impairs the growth of virus in vitro. J Virol 68:3317–3323

    PubMed  CAS  Google Scholar 

  • Heineman TC, Cohen JI (1995) The varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase is dispensable for viral replication and is not required for phosphorylation of ORF63 protein, the VZV homolog of herpes simplex virus ICP22. J Virol 69:7367–7370

    PubMed  CAS  Google Scholar 

  • Heineman TC, Connelly BL, Bourne N, Stanberry LR, Cohen JI (1995) Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs. J Virol 69:8109–8113

    PubMed  CAS  Google Scholar 

  • Heineman TC, Seidel K, Cohen JI (1996) The varicella-zoster virus ORF66 protein induces kinase activity and is dispensable for viral replication. J Virol 70:7312–7317

    PubMed  CAS  Google Scholar 

  • Heineman T, Pesnicak L, Ali M, Krogmann T, Krudwig N, Cohen JI (2004) Varicella-zoster virus expressing HSV-2 glycoproteins B and D induces protection against HSV-2 challenge. Vaccine 22:2558–2565

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Sommer MH, Zerboni L, Baiker A, Sato B, Liang R, Hay J, Ruyechan W, Arvin AM (2005) Role of the varicella-zoster virus gene product encoded by open reading frame 35 in viral replication in vitro and in differentiated human skin and T cells in vivo. J Virol 79:4819–4827

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Ali MA, Cohen JI (2006) Insulin degrading enzyme is a cellular receptor for varicella-zoster virus infection and for cell-to-cell spread of virus. Cell 127:305–316

    Article  PubMed  CAS  Google Scholar 

  • Lowe RS, Keller PM, Keech BJ, Davison AJ, Whang Y, Morgan AJ, Kieff E, Ellis RW (1987) Varicella-zoster virus as a live vector for the expression of foreign genes. Proc Natl Acad Sci USA 84:3896–3900

    Article  PubMed  CAS  Google Scholar 

  • Mallory S, Sommer M, Arvin AM (1997) Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking. J Virol 71:8279–8288

    PubMed  CAS  Google Scholar 

  • Mo C, Suen J, Sommer M, Arvin A (1999) Characterization of varicella-zoster virus glycoprotein K (open reading frame 5) and its role in virus growth. J Virol 73:4197–4207

    PubMed  CAS  Google Scholar 

  • Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1999) The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci USA 95:11969–11974

    Article  Google Scholar 

  • Moriuchi H, Moriuchi M, Smith HA, Straus SE, Cohen JI (1992) Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. J Virol 66:7303–7308

    PubMed  CAS  Google Scholar 

  • Moriuchi H, Moriuchi M, Straus SE, Cohen JI (1993) Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67:2739–2746

    PubMed  CAS  Google Scholar 

  • Moriuchi H, Moriuchi M, Smith HA, Cohen JI (1994a) Varicella-zoster virus open reading frame 4 protein is functionally distinct from and does not complement its herpes simplex virus type 1 homolog ICP27. J Virol 68:1987–1992

    PubMed  CAS  Google Scholar 

  • Moriuchi M, Moriuchi H, Straus SE, Cohen JI (1994b) Varicella-zoster virus (VZV) virion-associated transactivator open reading frame 62 protein enhances the infectivity of VZV DNA. Virology 200:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K (2004) Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine 22:4069–4074

    Article  PubMed  CAS  Google Scholar 

  • Niizuma T, Zerboni L, Sommer MH, Ito H, Hinchliffe S, Arvin AM (2003) Construction of varicella-zoster virus recombinants from parent Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol 77:6062–6065

    Article  PubMed  CAS  Google Scholar 

  • Oliver SL, Zerboni L, Sommer M, Rajamani J, Arvin AM (2008) Development of recombinant varicella-zoster viruses expressing luciferase fusion proteins for live in vivo imaging in human skin and dorsal root ganglia xenografts. J Virol Methods 154:182–193

    Article  PubMed  CAS  Google Scholar 

  • Reddy SM, Cox E, Iofin I, Soong W, Cohen JI (1998a) Varicella-zoster virus (VZV) ORF32 encodes a phosphoprotein that is posttranscriptionally modified by the VZV ORF47 protein kinase. J Virol 72:8083–8088

    PubMed  CAS  Google Scholar 

  • Reddy SM, Williams M, Cohen JI (1998b) Expression of a uracil DNA glycosylase (UNG) inhibitor in mammalian cells: varicella-zoster virus can replicate in vitro in the absence of detectable UNG activity. Virology 251:393–401

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Williams M, Cohen JI (1997) Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro. Virology 234:186–195

    Article  PubMed  CAS  Google Scholar 

  • Sadaoka T, Yoshii H, Imazawa T, Yamanishi K, Mori Y (2007) Deletion in open reading frame 49 of varicella-zoster virus reduces virus growth in human malignant melanoma cells but not in human embryonic fibroblasts. J Virol 81:12654–12665

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Callanan LD, Pesnicak L, Krogmann T, Cohen JI (2002a) Varicella-zoster virus (VZV) ORF17 protein induces RNA cleavage and is critical for replication of VZV at 37°C, but not 33°C. J Virol 76:11012–11023

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Pesnicak L, Cohen JI (2002b) Varicella-zoster virus ORF2 encodes a membrane phosphoprotein that is dispensable for viral replication and for establishment of latency. J Virol 76:3575–3578

    Article  PubMed  CAS  Google Scholar 

  • Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM (2003a) Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 77:5607–5620

    Article  PubMed  CAS  Google Scholar 

  • Sato B, Sommer M, Ito H, Arvin AM (2003b) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 7:12369–12372

    Article  Google Scholar 

  • Shiraki K, Hayakawa Y, Mori H, Namazue J, Takamizawa A, Yoshida I, Yamanishi K, Takahashi M (1991) Development of immunogenic recombinant Oka varicella vaccine expressing hepatitis B virus surface antigen. J Gen Virol 72:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Shiraki K, Sato H, Yoshida Y, Yamamura JI, Tsurita M, Kurokawa M, Kageyama S (2001) Construction of Oka varicella vaccine expressing human immunodeficiency virus env antigen. J Med Virol 64:89–95

    Article  PubMed  CAS  Google Scholar 

  • Somboonthum P, Yoshii H, Okamoto S, Koike M, Gomi Y, Uchiyama Y, Takahashi M, Yamanishi K, Mori Y (2007) Generation of a recombinant Oka varicella vaccine expressing mumps virus hemagglutinin-neuraminidase protein as a polyvalent live vaccine. Vaccine 25:8741–8755

    Article  PubMed  CAS  Google Scholar 

  • Sommer MH, Zagha E, Serrano OK, Ku CC, Zerboni L, Baiker A, Santos R, Spengler M, Lynch J, Grose C, Ruyechan W, Hay J, Arvin AM (2001) Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J Virol 75:8224–8239

    Article  PubMed  CAS  Google Scholar 

  • Soong W, Schultz JC, Patera AC, Sommer MH, Cohen JI (2000) Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J Virol 74:1864–1870

    Article  PubMed  CAS  Google Scholar 

  • Strapans SI, Barry AP, Silvestri G, Safrit JT, Kozyr N, Sumpter B, Nguygen H, McClure H, Montefiori D, Cohen JI, Feinberg M (2004) Enhance simian immunodeficiency virus replication and accelerated AIDS in macaques primed to mount a CD4 T cell response to SIV Env. Proc Natl Acad Sci USA 101:13026–13031

    Article  Google Scholar 

  • Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N (2007) A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 81:13200–13208

    Article  PubMed  CAS  Google Scholar 

  • Visalli RJ, Fairhurst J, Srinivas S, Hu W, Feld B, DiGrandi M, Curran K, Ross A, Bloom JD, van Zeijl M, Jones TR, O’Connell J, Cohen JI (2003) Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication. J Virol 77:2349–2358

    Article  PubMed  CAS  Google Scholar 

  • Xia D, Srinivas S, Sato H, Pesnicak L, Straus SE, Cohen JI (2003) Varicella-zoster virus ORF21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency. J Virol 77:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi Y, Sadaoka T, Yoshii H, Somboonthum P, Imazawa T, Nagaike K, Ozono K, Yamanishi K, Mori Y (2008) Varicella-zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. J Virol 82:795–804

    Article  PubMed  CAS  Google Scholar 

  • Yoshii H, Somboonthum P, Takahashi M, Yamanishi K, Mori Y (2007) Cloning of full length genome of varicella-zoster virus vaccine strain into a bacterial artificial chromosome and reconstitution of infectious virus. Vaccine 25:5006–5012

    Article  PubMed  CAS  Google Scholar 

  • Yoshii H, Sadaoka K, Matsuura M, Nagaike K, Takahashi M, Yamanishi K, Mori Y (2008) Varicella-zoster virus ORF 58 gene is dispensable for viral replication in cell culture. Virol J 30(5):54

    Article  Google Scholar 

  • Zerboni L, Hinchliffe S, Sommer MH, Ito H, Besser J, Stamatis S, Cheng J, Distefano D, Kraiouchkine N, Shaw A, Arvin AM (2005) Analysis of varicella zoster virus attenuation by evaluation of chimeric parent Oka/vaccine Oka recombinant viruses in skin xenografts in the SCIDhu mouse model. Virology 332:337–346

    Article  PubMed  CAS  Google Scholar 

  • Zerboni L, Sommer M, Ware CF, Arvin AM (2000) Varicella-zoster virus infection of a human CD4-positive T-cell line. Virology 270:278–285

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Rowe J, Wang W, Sommer M, Arvin A, Moffat J, Zhu H (2007) Genetic analysis of varicella-zoster virus ORF0 to ORF4 by use of a novel luciferase bacterial artificial chromosome system. J Virol 81:9024–9033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the intramural research program of the National Institute of Allergy and Infectious Diseases for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, J.I. (2010). The Varicella-Zoster Virus Genome. In: Abendroth, A., Arvin, A., Moffat, J. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_10

Download citation

Publish with us

Policies and ethics