Skip to main content

Molecular Characterization of Varicella Zoster Virus in Latently Infected Human Ganglia: Physical State and Abundance of VZV DNA, Quantitation of Viral Transcripts and Detection of VZV-Specific Proteins

  • Chapter
  • First Online:
Varicella-zoster Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 342))

Abstract

Varicella zoster virus (VZV) establishes latency in neurons of human peripheral ganglia where the virus genome is most likely maintained as a circular episome bound to histones. There is considerable variability among individuals in the number of latent VZV DNA copies. The VZV DNA burden does not appear to exceed that of herpes simplex type 1 (HSV-1). Expression of VZV genes during latency is highly restricted and is regulated epigenetically. Of the VZV open reading frames (ORFs) that have been analyzed for transcription during latency using cDNA sequencing, only ORFs 21, 29, 62, 63, and 66 have been detected. VZV ORF 63 is the most frequently and abundantly transcribed VZV gene detected in human ganglia during latency, suggesting a critical role for this gene in maintaining the latent state and perhaps the early stages of virus reactivation. The inconsistent detection and low abundance of other VZV transcripts suggest that these genes play secondary roles in latency or possibly reflect a subpopulation of neurons undergoing VZV reactivation. New technologies, such as GeXPS multiplex PCR, have the sensitivity to detect multiple low abundance transcripts and thus provide a means to elucidate the entire VZV transcriptome during latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ChIP:

Chromatin immunoprecipitation

DRG:

Dorsal root ganglia

HSV:

Herpes simplex virus

IHC:

Immunohistochemistry

LCM:

Laser capture microdissection

miRNA:

MicroRNA

ORF:

Open reading frame

qRT-PCR:

Quantitative reverse transcriptase-PCR

RT-PCR:

Reverse transcriptase-PCR

TG:

Trigeminal ganglia

VZV:

Varicella zoster virus

References

  • Arvin A (1996) Varicella-zoster virus. Clin Microbiol Rev 9:361–381

    PubMed  CAS  Google Scholar 

  • Chaudhuri V, Sommer M, Rajamani J et al (2008) Functions of varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection. J Virol 82:10231–10246

    Article  PubMed  CAS  Google Scholar 

  • Clarke P, Beer T, Cohrs R et al (1995) Configuration of latent varicella-zoster virus DNA. J Virol 69:8151–8154

    PubMed  CAS  Google Scholar 

  • Cohrs RJ, Gilden DH (2003) Varicella zoster virus transcription in latently infected ganglia. Anticancer Res 23:2063–2070

    PubMed  CAS  Google Scholar 

  • Cohrs RJ, Gilden DH (2007) Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol 81:2950–2956

    Article  PubMed  CAS  Google Scholar 

  • Cohrs RJ, Srock K, Barbour MB et al (1994) Varicella-zoster virus (VZV) transcription during latency in human ganglia: construction of a cDNA library from latently infected human trigeminal ganglia and detection of a vzv transcript. J Virol 68:7900–7908

    PubMed  CAS  Google Scholar 

  • Cohrs RJ, Barbour M, Gilden DH (1996) Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in cDNA library enriched for VZV RNA. J Virol 70:2789–2796

    PubMed  CAS  Google Scholar 

  • Cohrs RJ, Randall J, Smith J et al (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471

    Article  PubMed  CAS  Google Scholar 

  • Cohrs RJ, Gilden DH, Kinchington PR et al (2003a) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665

    Article  PubMed  CAS  Google Scholar 

  • Cohrs RJ, Hurley MP, Gilden DH (2003b) Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virus. J Virol 77:11718–11732

    Article  PubMed  CAS  Google Scholar 

  • Cohrs RJ, LaGuardia JJ, Gilden DH (2005) Distribution of latent herpes simplex virus type-1 and varicella zoster virus DNA in human trigeminal ganglia. Virus Genes 31:223–227

    Article  PubMed  CAS  Google Scholar 

  • Croen KD, Ostrove JM, Dragovic LJ et al (1988) Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc Natl Acad Sci USA 85:9773–9777

    Article  PubMed  CAS  Google Scholar 

  • Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816

    Article  PubMed  CAS  Google Scholar 

  • Dueland AN, Ranneberg-Nilsen T, Degré M (1995) Detection of latent varicella zoster virus DNA and human gene sequences in human trigeminal ganglia by in situ amplification combined with in situ hybridization. Arch Virol 140:2055–2066

    Article  PubMed  CAS  Google Scholar 

  • Gary L, Gilden DH, Cohrs RJ (2006) Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 80:4921–4926

    Article  PubMed  CAS  Google Scholar 

  • Gilden DH, Vafai A, Shtram Y et al (1983) Varicella-zoster virus DNA in human sensory ganglia. Nature 306:478–480

    Article  PubMed  CAS  Google Scholar 

  • Gilden DH, Rozenman Y, Murray R et al (1987) Detection of varicella-zoster virus nucleic acid in neurons of normal human thoracic ganglia. Ann Neurol 22:377–380

    Article  PubMed  CAS  Google Scholar 

  • Gilden DH, Gesser R, Smith J et al (2001) Presence of VZV and HSV-1 DNA in human nodose and celiac ganglia. Virus Genes 23:145–147

    Article  PubMed  CAS  Google Scholar 

  • Grinfeld E, Kennedy PGE (2004) Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29:317–319

    Article  PubMed  CAS  Google Scholar 

  • Hüfner K, Derfuss T, Herberger S et al (2006) Latency of α-herpes viruses is accompanied by a chronic inflammation in human trigeminal ganglia but not in dorsal root ganglia. J Neuropathol Exp Neurol 65:1022–1030

    Article  PubMed  Google Scholar 

  • Hyman RW, Ecker JR, Tenser RB (1983) Varicella-zoster virus RNA in human trigeminal ganglia. Lancet 2:814–816

    Article  PubMed  CAS  Google Scholar 

  • Kemble GW, Annuziato P, Lungu O et al (2000) Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J Virol 74:11311–11321

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PG, Grinfeld E, Gow JW (1998) Latent varicella-zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci USA 95:4658–4662

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PGE, Grinfeld E, Bell JE (2000) Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74:11893–11898

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PGE, Grinfeld E, Craigon M et al (2005) Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays. J Gen Virol 86:2673–2684

    Article  PubMed  CAS  Google Scholar 

  • LaGuardia JJ, Cohrs RC, Gilden DH (1999) Prevalence of varicella-zoster virus DNA in dissociated human trigeminal ganglion neurons and nonneuronal cells. J Virol 73:8571–8577

    PubMed  CAS  Google Scholar 

  • Levin MJ, Cai G-Y, Manchak MD et al (2003) Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol 77:6979–6987

    Article  PubMed  CAS  Google Scholar 

  • Lungu O, Panagiotidis C, Annuziato PW et al (1998) Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc Natl Acad Sci USA 95:7080–7085

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Wellish MC, Dueland AN et al (1992) Localization of herpes simplex virus and varicella zoster virus DNA in human ganglia. Ann Neurol 31:444–448

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Wellish M, Lederer D et al (1993) Quantitation of latent varicella-zoster virus DNA in human trigeminal ganglia by polymerase chain reaction. J Virol 67:2381–2384

    PubMed  CAS  Google Scholar 

  • Mahalingam R, Wellish M, Cohrs R et al (1996) Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci USA 93:2122–2124

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Lasher R, Wellish M et al (1998) Localization of varicella-zoster virus gene 21 protein in virus-infected cells in culture. J Virol 72:6832–6837

    PubMed  CAS  Google Scholar 

  • Mahalingam R, Kennedy PGE, Gilden DH (1999) The problems of latent varicella zoster virus in human ganglia: precise cell location and viral content. J Neurovirol 5:445–448

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Traina-Dorge V, Wellish M et al (2007) Simian varicella virus reactivation in cynomologous monkeys. Virology 368:50–59

    Article  PubMed  CAS  Google Scholar 

  • Meier JL, Holman RP, Croen KD et al (1993) Varicella-zoster virus transcription in human trigeminal ganglia. Virology 193:193–200

    Article  PubMed  CAS  Google Scholar 

  • Nagel MA, Gilden DH (2007) The protean neurologic manifestations of varicella-zoster virus infection. Cleve Clin J Med 74:489–504

    Article  PubMed  Google Scholar 

  • Nagel MA, Gilden D, Shade T et al (2009) Rapid and sensitive detection of 68 unique varicella zoster virus gene transcripts in five multiplex reverse transcription-polymerase chain reactions. J Virol Methods 157:62–68

    Article  PubMed  CAS  Google Scholar 

  • Peters GA, Tyler SD, Grose C et al (2006) A full-genome phylogenetic analysis of varicella-zoster virus reveals a novel origin of replication-based genotyping scheme and evidence of recombination between major circulating clades. J Virol 80:9850–9860

    Article  PubMed  CAS  Google Scholar 

  • Pevenstein SR, Williams RK, McChesney D et al (1999) Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 73:10514–10518

    PubMed  CAS  Google Scholar 

  • Ross J, Williams M, Cohen JI (1997) Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro. Virology 234:186–195

    Article  PubMed  CAS  Google Scholar 

  • Theil D, Derfuss T, Paripovic I et al (2003) Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • Tyler SD, Peters GA, Grose C et al (2007) Genomic cartography of varicella-zoster virus: a complete genome-based analysis of strain variability with implications for attenuation and phenotypic differences. Virology 359:447–458

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Nagel MA, Cohrs RJ et al (2009) Analysis of human alphaherpesviruses microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Lau TY, Morales M et al (2005) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79:14079–14087

    Article  PubMed  CAS  Google Scholar 

  • Wang F-Z, Weber F, Croce C et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNAspecies that affect its replication. J Virol 82:9065–9074

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Public Health Service grants NS032623 and AG032958 from the National Institutes of Health. The authors thank Dr. Robert Cordery-Cotter and Marina Hoffman for editorial review and Cathy Allen for preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Cohrs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azarkh, Y., Gilden, D., Cohrs, R.J. (2010). Molecular Characterization of Varicella Zoster Virus in Latently Infected Human Ganglia: Physical State and Abundance of VZV DNA, Quantitation of Viral Transcripts and Detection of VZV-Specific Proteins. In: Abendroth, A., Arvin, A., Moffat, J. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2009_2

Download citation

Publish with us

Policies and ethics