Skip to main content

Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 41))

Abstract

Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adcock RA, Dale C, Fisher M et al (2009) When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia. Schizophr Bull 35(6):1132–1141

    PubMed  PubMed Central  Google Scholar 

  • Alekseichuk I, Turi Z, de Lara GA et al (2016) Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol 26(12):1513–1521

    CAS  PubMed  Google Scholar 

  • Andrews SC, Hoy KE, Enticott PG et al (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4(2):84–89

    PubMed  Google Scholar 

  • Appelbaum LG, Cain MS, Schroeder JE et al (2012) Stroboscopic visual training improves information encoding in short-term memory. Atten Percept Psychophys 74(8):1681–1691

    PubMed  Google Scholar 

  • Axmacher N, Henseler MM, Jensen O et al (2010) Cross frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A 107(7):3228–3233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachman P, Kim J, Yee CM et al (2009) Efficiency of working memory encoding in twins discordant for schizophrenia. Psychiatry Res 174(2):97–104

    PubMed  PubMed Central  Google Scholar 

  • Badcock JC, Badcock DR, Read C et al (2008) Examining encoding imprecision in spatial working memory in schizophrenia. Schizophr Res 100(1–3):144–152

    PubMed  Google Scholar 

  • Baddeley A (2007) Working memory, thought, and action. Oxford University Press, Oxford

    Google Scholar 

  • Balogh Z, Benedek G, Kéri S (2008) Retinal dysfunctions in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32(1):297–300

    PubMed  Google Scholar 

  • Barch DM, Csernansky JG (2007) Abnormal parietal cortex activation during working memory in schizophrenia: verbal phonological coding disturbances versus domain-general executive dysfunction. Am J Psychiatry 164(7):1090–1098

    PubMed  Google Scholar 

  • Barch DM, Csernansky JG, Conturo T et al (2002) Working and long-term memory deficits in schizophrenia: is there a common prefrontal mechanism? J Abnorm Psychol 111(3):478–494

    PubMed  Google Scholar 

  • Barr MS, Rajji TK, Zomorrodi R et al (2017) Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophr Res 189:104–110

    PubMed  Google Scholar 

  • Bates AT, Kiehl KA, Laurens KR et al (2009) Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophr Res 115(2–3):222–230

    PubMed  Google Scholar 

  • Bays PM (2015) Spikes not slots: noise in neural populations limits working memory. Trends Cogn Sci 19(8):431–438

    PubMed  Google Scholar 

  • Bays PM, Gorgoraptis N, Wee N et al (2011) Temporal dynamics of encoding, storage, and reallocation of visual working memory. J Vis 11(10):6. https://doi.org/10.1167/11.10.6

    Article  PubMed  Google Scholar 

  • Becker R, Reinacher M, Freyer F et al (2011) How ongoing neuronal oscillations account for evoked fMRI variability. J Neurosci 31(30):11016–11027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger H (1929) Über das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr 87(1):527–570

    Google Scholar 

  • Braver TS, Cohen JD (1999) Dopamine, cognitive control, and schizophrenia: the gating model. Prog Brain Res 121:327–349

    CAS  PubMed  Google Scholar 

  • Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46(3):312–328

    CAS  PubMed  Google Scholar 

  • Brittain PJ, Surguladze S, McKendrick AM et al (2010) Backward and forward visual masking in schizophrenia and its relation to global motion and global form perception. Schizophr Res 124(1–3):134–141

    CAS  PubMed  Google Scholar 

  • Butler PD, Zemon V, Schechter I et al (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62(5):495–504

    PubMed  PubMed Central  Google Scholar 

  • Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2006) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(2):417–430

    PubMed  PubMed Central  Google Scholar 

  • Butler PD, Abeles IY, Weiskopf NG et al (2009) Sensory contributions to impaired emotion processing in schizophrenia. Schizophr Bull 35(6):1095–1107

    PubMed  PubMed Central  Google Scholar 

  • Byne W, Fernandes J, Haroutunian V et al (2007) Reduction of right medial pulvinar volume and neuron number in schizophrenia. Schizophr Res 90(1–3):71–75

    PubMed  Google Scholar 

  • Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160(12):2209–2215

    PubMed  Google Scholar 

  • Cannon TD, Glahn DC, Kim J et al (2005) Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch Gen Psychiatry 62(10):1071–1080

    PubMed  Google Scholar 

  • Chen Y (2011) Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophr Bull 37(4):709–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Grossman ED, Bidwell LC et al (2008) Differential activation patterns of occipital and prefrontal cortices during motion processing: evidence from normal and schizophrenic brains. Cogn Affect Behav Neurosci 8(3):293–303

    PubMed  PubMed Central  Google Scholar 

  • Chen CMA, Stanford AD, Mao X et al (2014) GABA level, gamma oscillation, and working memory performance in schizophrenia. NeuroImage Clin 4:531–539

    PubMed  PubMed Central  Google Scholar 

  • Chu EMY, Kolappan M, Barnes TR et al (2012) A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res 203(1):89–94

    PubMed  PubMed Central  Google Scholar 

  • Chun M, Turk-Brown NB (2007) Interactions between attention and memory. Curr Opin Neurobiol 17(2):177–184

    CAS  PubMed  Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29(7):1353–1362

    CAS  PubMed  Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99(1):45–77

    CAS  PubMed  Google Scholar 

  • Coleman MJ, Cestnick L, Krastoshevsky O et al (2009) Schizophrenia patients show deficits in shifts of attention to different levels of global-local stimuli: evidence for magnocellular dysfunction. Schizophr Bull 35(6):1108–1116

    PubMed  PubMed Central  Google Scholar 

  • Compte A, Brunel N, Goldman-Rakic PS et al (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923

    CAS  PubMed  Google Scholar 

  • Conklin HM, Curtis CE, Calkins ME et al (2005) Working memory functioning in schizophrenia patients and their first-degree relatives: cognitive functioning shedding light on etiology. Neuropsychologia 43(6):930–942

    PubMed  Google Scholar 

  • Coon WG, Gunduz A, Brunner P et al (2016) Oscillatory phase modulates the timing of neuronal activations and resulting behavior. NeuroImage 133:294–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull 104(2):163–191

    CAS  PubMed  Google Scholar 

  • Cowan N (1999) An embedded-processes model of working memory. In: Miyake A, Shah P (eds) Models of working memory: mechanisms of active maintenance and executive control. Cambridge University Press, Cambridge, pp 62–101

    Google Scholar 

  • Cronenwett WJ, Csernansky J (2010) Thalamic pathology in schizophrenia. In: Swerdlow NR (ed) Behavioral neurobiology of schizophrenia and its treatment. Springer, Berlin, pp 509–528

    Google Scholar 

  • Dale CL, Brown EG, Fisher M et al (2015) Auditory cortical plasticity drives training-induced cognitive changes in schizophrenia. Schizophr Bull 42(1):220–228

    PubMed  PubMed Central  Google Scholar 

  • Di Russo F, Pitzalis S, Aprile T et al (2007) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp 28(4):323–334

    PubMed  Google Scholar 

  • Dias EC, Butler PD, Hoptman MJ, Javitt DC (2011) Early sensory contributions to contextual encoding deficits in schizophrenia. Arch Gen Psychiatry 68(7):654–664

    PubMed  PubMed Central  Google Scholar 

  • Donohoe G, Morris DW, De Sanctis P et al (2008) Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 63(5):484–489

    PubMed  Google Scholar 

  • Dorph-Petersen KA, Pierri JN, Wu Q et al (2007) Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 501(2):290–301

    PubMed  Google Scholar 

  • Driesen NR, Leung HC, Calhoun VD et al (2008) Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence. Biol Psychiatry 64(12):1026–1034

    PubMed  PubMed Central  Google Scholar 

  • Ducato MG, Michael GA, Thomas P et al (2008) Attentional capture in schizophrenia: failure to resist interference from motion signals. Cogn Neuropsychiatry 13(3):185–209

    CAS  PubMed  Google Scholar 

  • Eimer M, Schlaghecken F (1998) Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. J Exp Psychol Hum Percept Perform 24(6):1737–1747

    CAS  PubMed  Google Scholar 

  • Ergenoglu T, Demiralp T, Bayraktaroglu Z et al (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20(3):376–383

    PubMed  Google Scholar 

  • Erickson M, Hahn B, Leonard CJ et al (2014) Enhanced vulnerability to distraction does not account for working memory capacity reduction in people with schizophrenia. Schizophr Res Cogn 1(3):149–154

    PubMed  PubMed Central  Google Scholar 

  • Erickson MA, Hahn B, Leonard CJ et al (2015) Impaired working memory capacity is not caused by failures of selective attention in schizophrenia. Schizophr Bull 41(2):366–373

    PubMed  Google Scholar 

  • Fischer J, Whitney D (2012) Attention gates visual coding in the human pulvinar. Nat Commun 3:1051. https://doi.org/10.1038/ncomms2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher M, Holland C, Merzenich MM et al (2009) Using neuroplasticity based auditory training to improve verbal memory in schizophrenia. Am J Psychiatry 166(7):805–811

    PubMed  PubMed Central  Google Scholar 

  • Fisher M, Loewy R, Carter C et al (2014) Neuroplasticity-based auditory training via laptop computer improves cognition in young individuals with recent onset schizophrenia. Schizophr Bull 41(1):250–258

    PubMed  PubMed Central  Google Scholar 

  • Forbes NF, Carrick LA, McIntosh AM, Lawrie SM (2009) Working memory in schizophrenia: a meta-analysis. Psychol Med 39(6):889–905

    CAS  PubMed  Google Scholar 

  • Friese U, Köster M, Hassler U et al (2013) Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage 66:642–647

    PubMed  Google Scholar 

  • Fukuda K, Mance I, Vogel EK (2015) α power modulation and event-related slow wave provide dissociable correlates of visual working memory. J Neurosci 35(41):14009–14016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda K, Kang MS, Woodman GF (2016) Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. J Neurophysiol 116(4):1715–1727

    PubMed  PubMed Central  Google Scholar 

  • Fukuda K, Sundby C, Woodman G (2017) Parieto-occipital alpha power dynamics selectively code for the storage of spatial locations in visual working memory. J Vis 17(10):336. https://doi.org/10.1167/17.10.336

    Article  Google Scholar 

  • Gagné AM, Hebert M, Maziade M (2015) Revisiting visual dysfunctions in schizophrenia from the retina to the cortical cells: a manifestation of defective neurodevelopment. Prog Neuro-Psychopharmacol Biol Psychiatry 62:29–34

    Google Scholar 

  • Glahn DC, Therman S, Manninen M et al (2003) Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 53(7):624–626

    PubMed  Google Scholar 

  • Glahn DC, Bearden CE, Cakir S, Barrett JA, Najt P, Serap Monkul E, Maples N, Velligan DI, Soares JC (2006) Differential working memory impairment in bipolar disorder and schizophrenia: effects of lifetime history of psychosis. Bipolar Disord 8(2):117–123

    PubMed  Google Scholar 

  • Gold JM, Carpenter C, Randolph C et al (1997) Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 54(2):159–165

    CAS  PubMed  Google Scholar 

  • Gold JM, Wilk CM, McMahon RP et al (2003) Working memory for visual features and conjunctions in schizophrenia. J Abnorm Psychol 112(1):61–71

    PubMed  Google Scholar 

  • Gold JM, Fuller RL, Robinson BM et al (2006) Intact attentional control of working memory encoding in schizophrenia. J Abnorm Psychol 115(4):658–673

    PubMed  Google Scholar 

  • Gold JM, Hahn B, Zhang WW et al (2010) Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Arch Gen Psychiatry 67(6):570–577

    PubMed  PubMed Central  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6(4):348–357

    CAS  PubMed  Google Scholar 

  • Gooding DC, Tallent KA (2003) Spatial, object, and affective working memory in social anhedonia: an exploratory study. Schizophr Res 63(3):247–260

    PubMed  Google Scholar 

  • Green AE, Fitzgerald PB, Johnston PJ et al (2017) Evidence for a differential contribution of early perceptual and late cognitive processes during encoding to episodic memory impairment in schizophrenia. World J Biol Psychiatry 18(5):369–381

    PubMed  Google Scholar 

  • Griesmayr B, Berger B, Stelzig-Schoeler R et al (2014) EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn Affect Behav Neurosci 14(4):1340–1355

    PubMed  Google Scholar 

  • Haenschel C, Linden DE (2011) Exploring intermediate phenotypes with EEG: working memory dysfunction in schizophrenia. Behav Brain Res 216(2):481–495

    PubMed  Google Scholar 

  • Haenschel C, Bittner RA, Haertling R et al (2007) Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia. Arch Gen Psychiatry 64:1229–1240

    PubMed  Google Scholar 

  • Haenschel C, Bittner RA, Waltz J et al (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29(30):9481–9489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haenschel C, Linden DE, Bittner RA et al (2010) Alpha phase locking predicts residual working memory performance in schizophrenia. Biol Psychiatry 68(7):595–598

    PubMed  Google Scholar 

  • Hahn B, Robinson BM, Kaiser ST et al (2010) Failure of schizophrenia patients to overcome salient distractors during working memory encoding. Biol Psychiatry 68(7):603–609

    PubMed  PubMed Central  Google Scholar 

  • Hanslmayr S, Aslan A, Staudigl T et al (2007) Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37(4):1465–1473

    PubMed  Google Scholar 

  • Hartman M, Steketee MC, Silva S et al (2003) Working memory and schizophrenia: evidence for slowed encoding. Schizophr Res 59(2–3):99–113

    PubMed  Google Scholar 

  • Hill AT, Fitzgerald PB, Hoy KE (2016) Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul 9(2):197–208

    PubMed  Google Scholar 

  • Javitt DC (2009) When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 5(1):249–275

    PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Strous RD, Grochowski S et al (1997) Impaired precision, but normal retention, of auditory sensory (“echoic”) memory information in schizophrenia. J Abnorm Psychol 106(2):315–324

    CAS  PubMed  Google Scholar 

  • Javitt DC, Liederman E, Cienfuegos A et al (1999) Panmodal processing imprecision as a basis for dysfunction of transient memory storage systems in schizophrenia. Schizophr Bull 25(4):763–775

    CAS  PubMed  Google Scholar 

  • Javitt DC, Rabinowicz E, Silipo G et al (2007) Encoding vs. retention: differential effects of cue manipulation on working memory performance in schizophrenia. Schizophr Res 91(1–3):159–168

    PubMed  PubMed Central  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186. https://doi.org/10.3389/fnhum.2010.00186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Wylie G, Pasternak R et al (2006) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82(1):1–8

    CAS  PubMed  Google Scholar 

  • Kim MA, Tura E, Potkin SG et al (2010) Working memory circuitry in schizophrenia shows widespread cortical inefficiency and compensation. Schizophr Res 117(1):42–51

    PubMed  PubMed Central  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res Rev 53(1):63–88

    PubMed  Google Scholar 

  • Koychev I, El-Deredy W, Haenschel C et al (2010) Visual information processing deficits as biomarkers of vulnerability to schizophrenia: an event-related potential study in schizotypy. Neuropsychologia 48(7):2205–2214

    PubMed  Google Scholar 

  • Krause CM (2006) Cognition-and memory-related ERD/ERS responses in the auditory stimulus modality. Prog Brain Res 159:197–207

    PubMed  Google Scholar 

  • Krishnan GP, Vohs JL, Hetrick WP et al (2005) Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 116(3):614–624

    PubMed  Google Scholar 

  • Krystal JH, Anticevic A, Yang GJ et al (2017) Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: a translational and computational neuroscience perspective. Biol Psychiatry 81(10):874–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie J, Maziade M, Hébert M (2014) The brain through the retina: the flash electroretinogram as a tool to investigate psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 48:129–134. https://doi.org/10.1016/j.pnpbp.2013.09.020

    Article  Google Scholar 

  • Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114(4):599–611

    PubMed  Google Scholar 

  • Lee J, Park S (2006) The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophr Res 81(2–3):191–197

    PubMed  Google Scholar 

  • Lee J, Folley BS, Gore J et al (2008) Origins of spatial working memory deficits in schizophrenia: an event-related FMRI and near-infrared spectroscopy study. PLoS One 3(3):e1760. https://doi.org/10.1371/journal.pone.0001760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WW, Tajunisah I, Sharmilla K et al (2013) Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Ophthalmol Vis Sci 54(12):7785–7792

    PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31(3):291–308

    CAS  PubMed  Google Scholar 

  • Makovski T, Lavidor M (2014) Stimulating occipital cortex enhances visual working memory consolidation. Behav Brain Res 275:84–87. https://doi.org/10.1016/j.bbr.2014.09.004

    Article  PubMed  Google Scholar 

  • Mancuso LE, Ilieva IP, Hamilton RH et al (2016) Does transcranial direct current stimulation improve healthy working memory? A meta-analytic review. J Cogn Neurosci 28(8):1063–1089

    PubMed  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60(2):285–298

    PubMed  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45(9):1128–1137

    CAS  PubMed  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES et al (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48(2):99–109

    CAS  PubMed  Google Scholar 

  • Martinez A, Hillyard SA, Dias EC et al (2008) Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci 28(30):7492–7500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer JS, Park S (2012) Working memory encoding and false memory in schizophrenia and bipolar disorder in a spatial delayed response task. J Abnorm Psychol 121(3):784–794

    PubMed  PubMed Central  Google Scholar 

  • Mayer JS, Fukuda K, Vogel EK (2012) Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia. PLoS One 7(11):e48586. https://doi.org/10.1371/journal.pone.0048586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer JS, Kim J, Park S (2013) Failure to benefit from target novelty during encoding contributes to working memory deficits in schizophrenia. Cogn Neuropsychiatry 19(3):268–279

    PubMed  PubMed Central  Google Scholar 

  • Mesholam-Gately RI, Giuliano AJ, Goff KP et al (2009) Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23(3):315–335

    PubMed  Google Scholar 

  • Minzenberg MJ, Firl AJ, Yoon JH et al (2010) Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35(13):2590–2599

    PubMed  PubMed Central  Google Scholar 

  • Mulquiney PG, Hoy KE, Daskalakis ZJ et al (2011) Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol 122(12):2384–2389

    PubMed  Google Scholar 

  • Murray JD, Anticevic A, Gancsos M et al (2014) Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex 24(4):859–872

    PubMed  Google Scholar 

  • Myles-Worsley M, Park S (2002) Spatial working memory deficits in schizophrenia patients and their first degree relatives from Palau, Micronesia. Am J Med Genet 114(6):609–615

    PubMed  Google Scholar 

  • Narr KL, Toga AW, Szeszko P et al (2005) Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58(1):32–40

    PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME (1984) Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 10(2):160–203

    CAS  PubMed  Google Scholar 

  • Oribe N, Hirano Y, Kanba S et al (2013) Early and late stages of visual processing in individuals in prodromal state and first episode schizophrenia: an ERP study. Schizophr Res 146(1–3):95–102

    PubMed  Google Scholar 

  • Park S, Gooding DC (2014) Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophr Res Cogn 1(3):127–136

    PubMed  PubMed Central  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49(12):975–982

    CAS  PubMed  Google Scholar 

  • Park S, McTigue K (1997) Working memory and the syndromes of schizotypal personality. Schizophr Res 26(2):213–220

    CAS  PubMed  Google Scholar 

  • Park S, Holzman PS, Goldman-Rakic PS (1995) Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 52(10):821–828

    CAS  PubMed  Google Scholar 

  • Park S, Püschel J, Sauter BH et al (1999) Spatial working memory deficits and clinical symptoms in schizophrenia: a 4-month follow-up study. Biol Psychiatry 46(3):392–400

    CAS  PubMed  Google Scholar 

  • Pirkola T, Tuulio-Henriksson A, Glahn D, Kieseppä T, Haukka J, Kaprio J, Lönnqvist J, Cannon TD (2005) Spatial working memory function in twins with schizophrenia and bipolar disorder. Biol Psychiatry 58(12):930–936

    PubMed  Google Scholar 

  • Reavis EA, Lee J, Wynn JK et al (2017) Cortical thickness of functionally defined visual areas in schizophrenia and bipolar disorder. Cereb Cortex 27(5):2984–2993

    PubMed  Google Scholar 

  • Reinhart RM, Park S, Woodman GF (2018) Localization and elimination of attentional dysfunction in schizophrenia during visual search. Schizophr Bull 45(1):96–105

    Google Scholar 

  • Rokem A, Yoon JH, Ooms RE et al (2011) Broader visual orientation tuning in patients with schizophrenia. Front Hum Neurosci 5:127. https://doi.org/10.3389/fnhum.2011.00127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci 18(1):16–25

    PubMed  Google Scholar 

  • Salomon JA, Haagsma JA, Davis A et al (2015) Disability weights for the global burden of disease 2013 study. Lancet Glob Health 3(11):e712–e723

    PubMed  Google Scholar 

  • Saperstein AM, Fuller RL, Avila MT et al (2005) Spatial working memory as a cognitive endophenotype of schizophrenia: assessing risk for pathophysiological dysfunction. Schizophr Bull 32(3):498–506

    Google Scholar 

  • Sauseng P, Griesmayr B, Freunberger R et al (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022

    PubMed  Google Scholar 

  • Senkowski D, Gallinat J (2015) Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry 77(12):1010–1019

    PubMed  Google Scholar 

  • Serrano-Pedraza I, Romero-Ferreiro V, Read JC et al (2014) Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Front Psychol 5:1431. https://doi.org/10.3389/fpsyg.2014.01431

    Article  PubMed  PubMed Central  Google Scholar 

  • Silver H, Feldman P, Bilker W et al (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160(10):1809–1816

    PubMed  Google Scholar 

  • Silverstein SM, Keane BP (2011) Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. Schizophr Bull 37(4):690–699

    PubMed  PubMed Central  Google Scholar 

  • Silverstein SM, Rosen R (2015) Schizophrenia and the eye. Schizophr Res Cogn 2(2):46–55

    PubMed  PubMed Central  Google Scholar 

  • Silverstein SM, Berten S, Essex B et al (2009) An fMRI examination of visual integration in schizophrenia. J Integr Neurosci 8(2):175–202

    PubMed  Google Scholar 

  • Skottun BC, Skoyles JR (2007) Contrast sensitivity and magnocellular functioning in schizophrenia. Vis Res 47(23):2923–2933

    PubMed  Google Scholar 

  • Smith EE, Eich TS, Cebenoyan D et al (2011) Intact and impaired cognitive-control processes in schizophrenia. Schizophr Res 126(1–3):132–137

    PubMed  Google Scholar 

  • Starc M, Murray JD, Santamauro N et al (2017) Schizophrenia is associated with a pattern of spatial working memory deficits consistent with cortical disinhibition. Schizophr Res 181:107–116

    PubMed  Google Scholar 

  • Tadin D, Kim J, Doop ML (2006) Weakened center-surround interactions in visual motion processing in schizophrenia. J Neurosci 26(44):11403–11412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallent KA, Gooding D (1999) Working memory and Wisconsin Card Sorting Test performance in schizotypic individuals: a replication and extension. Psychiatry Res 89(3):161–170

    CAS  PubMed  Google Scholar 

  • Tek C, Gold J, Blaxton T et al (2002) Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry 59:146–153

    PubMed  Google Scholar 

  • Tibber MS, Anderson EJ, Bobin T et al (2013) Visual surround suppression in schizophrenia. Front Psychol 4:88. https://doi.org/10.3389/fpsyg.2013.00088

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2013) High-frequency oscillations and the neurobiology of schizophrenia. Dialogues Clin Neurosci 15(3):301–313

    PubMed  PubMed Central  Google Scholar 

  • Uhlhaas PJ, Singer W (2015) Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol Psychiatry 77(12):1001–1009

    PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E et al (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    CAS  PubMed  Google Scholar 

  • Walter H, Wunderlich AP, Blankenhorn M et al (2003) No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophr Res 61(2–3):175–184

    PubMed  Google Scholar 

  • Winterer G, Weinberger DR (2003) Cortical signal-to-noise ratio: insight into the pathophysiology and genetics of schizophrenia. Clin Neurosci Res 3(1–2):55–66

    CAS  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27(11):683–690

    CAS  PubMed  Google Scholar 

  • Winterer G, Ziller M, Dorn H et al (2000) Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111(5):837–849

    CAS  PubMed  Google Scholar 

  • Winterer G, Coppola R, Goldberg TE et al (2004) Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 161(3):490–500

    PubMed  Google Scholar 

  • Winterer G, Egan MF, Kolachana BS et al (2006) Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia. Biol Psychiatry 60(6):578–584

    CAS  PubMed  Google Scholar 

  • Xie W, Cappiello M, Park HB et al (2018) Schizotypy is associated with reduced mnemonic precision in visual working memory. Schizophr Res 193:91–97

    PubMed  Google Scholar 

  • Yeap S, Kelly SP, Sehatpour P et al (2006) Early visual sensory deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63(11):1180–1188

    PubMed  Google Scholar 

  • Yeap S, Kelly SP, Sehatpour P et al (2008) Visual sensory processing deficits in schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci 258(5):305–316

    PubMed  Google Scholar 

  • Yoon JH, Maddock RJ, Rokem A et al (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30(10):3777–3781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Picchioni M, Allen P, Toulopoulou T (2016) Working memory in unaffected relatives of patients with schizophrenia: a meta-analysis of functional magnetic resonance imaging studies. Schizophr Bull 42(4):1068–1077

    PubMed  PubMed Central  Google Scholar 

  • Zhao YL, Tan SP, De Yang F et al (2011) Dysfunction in different phases of working memory in schizophrenia: evidence from ERP recordings. Schizophr Res 133(1–3):112–119

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohee Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichinose, M., Park, S. (2019). Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. In: Hodgson, T. (eds) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. Springer, Cham. https://doi.org/10.1007/7854_2019_99

Download citation

Publish with us

Policies and ethics