Skip to main content

Dynamic Protention: The Architecture of Real-Time Cognition for Future Events

  • Chapter
  • First Online:
  • 1630 Accesses

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 41))

Abstract

For over 30 years now, a body of physiological evidence has been acquired which indicates that cognitive operations coordinate via the phase synchronization of neuronal firing. While usually ascribed to “binding,” i.e., the putting together of basic perceptual features to form more complex perceptual units, this ascription is not without critics, who identify phase synchronization as a function of sensorimotor coordination. From the perspective of an experimental paradigm used to measure the effects of stimulus synchronization, we discuss what is “bound” and attempt a reconciliation between perceptual and sensorimotor accounts of oscillatory synchronization. Our evidence identifies a role for synchronization in protentive coding, this is to say, coding in anticipation of a future event, and hence describes the architecture of real-time cognition for future events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bauer F, Cheadle SW, Parton A, Müller HJ, Usher M (2009) Gamma flicker triggers attentional selection without awareness. Proc Natl Acad Sci 106(5):1666–1671

    Article  CAS  Google Scholar 

  • Bosman CA, Womelsdorf T, Desimone R, Fries P (2009) A microsaccadic rhythm modulates gamma-band synchronization and behavior. J Neurosci 29:9471–9480

    Article  CAS  Google Scholar 

  • Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90

    Article  CAS  Google Scholar 

  • Driver J, Davis G, Russell C, Turatto M, Freeman E (2001) Segmentation, attention and phenomenal visual objects. Cognition 80:61–95

    Article  CAS  Google Scholar 

  • Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458

    Article  CAS  Google Scholar 

  • Elliott MA (2014) Atemporal equilibria: pro- and retroactive coding in the dynamics of cognitive microstructures. Front Psychol 5:990. https://doi.org/10.3389/fpsyg.2014.00990

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott MA, Müller HJ (1998) Synchronous information presented in 40-Hz flicker enhances visual feature binding. Psychol Sci 9:277–283

    Article  Google Scholar 

  • Elliott MA, Müller HJ (2000) Evidence for a 40-Hz oscillatory short-term visual memory revealed by human reaction time measurements. J Exp Psychol Learn Mem Cogn 26:703–718

    Article  CAS  Google Scholar 

  • Elliott MA, Müller HJ (2001) Effects of stimulus synchrony on mechanisms of perceptual organization. Vis Cognit 8:655–677

    Article  Google Scholar 

  • Elliott MA, Müller HJ (2004) Synchronization and stimulus timing: implications for temporal models of visual information processing. In: Kaernbach C, Schröger E, Müller H (eds) Psychophysics beyond sensation. Lawrence Erlbaum and Associates, Mahwah, pp 137–156

    Google Scholar 

  • Elliott MA, Becker C, Boucart M, Müller HJ (2000) Enhanced GABAA inhibition enhances synchrony coding in human perception. Neuroreport 11:3403–3407

    CAS  PubMed  Google Scholar 

  • Elliott MA, Herrmann CS, Mecklinger A, Müller HJ (2001) The loci of 40-Hz visual-object priming mechanisms: a combined electroencephalographic and reaction-time study. Int J Psychophysiol 38(3):211–225

    Google Scholar 

  • Elliott MA, Conci M, Müller HJ (2003) Prefrontal cortex maintains visual information in very short-term oscillatory persistence. Behav Brain Sci 26:733–734

    Article  Google Scholar 

  • Elliott MA, Giersch A, Seifert D (2006a) Some facilitatory effects of lorazepam on dynamic visual binding. Psychopharmacology (Berl) 184:229–238

    Article  CAS  Google Scholar 

  • Elliott MA, Shi Z, Kelly SD (2006b) A moment to reflect upon perceptual synchrony. J Cogn Neurosci 18:1880–1883

    Article  Google Scholar 

  • Farid H (2002) Temporal synchrony in perceptual grouping: a critique. Trends Cogn Sci 6:284–288

    Article  Google Scholar 

  • Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  CAS  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24:31–47

    Article  CAS  Google Scholar 

  • Hassler U, Trujillo-Barreto N, Gruber T (2011) Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. Neuroimage 57:1411–1421

    Article  Google Scholar 

  • Hassler U, Friese U, Martens U, Trujillo-Barreto N, Gruber T (2013) Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. Eur J Neurosci 38(3):2425–2433

    Article  Google Scholar 

  • Herrmann CS, Bosch V (2001) Gestalt perception modulates early visual processing. Neuroreport 12:901–904

    Article  CAS  Google Scholar 

  • Herrmann CS, Mecklinger A (2001) Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention. Vis Cognit 8:593–608

    Article  Google Scholar 

  • Herrmann C, Mecklinger A, Pfeifer E (1999) Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642

    Article  CAS  Google Scholar 

  • Husserl E (1928) Zur Phänomenologie des inneren Zeitbewusstseins. Niemeyer, Halle a. S.

    Google Scholar 

  • Kompass R, Elliott MA (2001) Modeling as part of perception: a hypothesis on the function of neural oscillations. In: Sommerfeld E, Kompass R, Lachmann T (eds) Fechner Day 2001. Proceedings of the seventeenth annual meeting of the international society of psychophysics. Pabst Science Publishers, Lengerich, pp 130–135

    Google Scholar 

  • Martinovic J, Busch N (2011) High frequency oscillations as a correlate of visual perception. Int J Psychophysiol 79:32–38

    Article  Google Scholar 

  • Melloni L, Schwiedrzik CM, Rodriguez E, Singer W (2009a) (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn Sci 13:239–245

    Article  Google Scholar 

  • Melloni L, Schwiedrzik CM, Wibral M, Rodriguez E, Singer W (2009b) Response to: Yuval-Greenberg et al., “Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades.” Neuron 58:429–441. Neuron 62:8–10

    Article  CAS  Google Scholar 

  • Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330

    Article  CAS  Google Scholar 

  • Rensink RA, Enns JT (1995) Preemption effects in visual search: evidence for low-level grouping. Psychol Rev 102:101

    Article  CAS  Google Scholar 

  • Shi Z, Elliott MA (2007) Oscillatory priming and form complexity. Percept Psychophys 69:193–208

    Article  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65

    Article  CAS  Google Scholar 

  • Tallon-Baudry C (2009) The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci 14:321–332

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  CAS  Google Scholar 

  • Usher M, Donnelly N (1998) Visual synchrony affects binding and segmentation processes in perception. Nature 394:179–182

    Article  CAS  Google Scholar 

  • Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58:429–441

    Article  CAS  Google Scholar 

  • Yuval-Greenberg S, Keren AS, Tomer O, Nelken I, Deouell LY (2009) Response to Letter: Melloni et al., “Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades”. Neuron 58:429–441. Neuron 62:10–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elliott, M.A., Coleman, L. (2019). Dynamic Protention: The Architecture of Real-Time Cognition for Future Events. In: Hodgson, T. (eds) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. Springer, Cham. https://doi.org/10.1007/7854_2019_94

Download citation

Publish with us

Policies and ethics