Skip to main content

Functions of Memory Across Saccadic Eye Movements

  • Chapter
  • First Online:
Processes of Visuospatial Attention and Working Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 41))

Abstract

Several times per second, humans make rapid eye movements called saccades which redirect their gaze to sample new regions of external space. Saccades present unique challenges to both perceptual and motor systems. During the movement, the visual input is smeared across the retina and severely degraded. Once completed, the projection of the world onto the retina has undergone a large-scale spatial transformation. The vector of this transformation, and the new orientation of the eye in the external world, is uncertain. Memory for the pre-saccadic visual input is thought to play a central role in compensating for the disruption caused by saccades. Here, we review evidence that memory contributes to (1) detecting and identifying changes in the world that occur during a saccade, (2) bridging the gap in input so that visual processing does not have to start anew, and (3) correcting saccade errors and recalibrating the oculomotor system to ensure accuracy of future saccades. We argue that visual working memory (VWM) is the most likely candidate system to underlie these behaviours and assess the consequences of VWM’s strict resource limitations for transsaccadic processing. We conclude that a full understanding of these processes will require progress on broader unsolved problems in psychology and neuroscience, in particular how the brain solves the object correspondence problem, to what extent prior beliefs influence visual perception, and how disparate signals arriving with different delays are integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albano JE, King WM (1989) Rapid adaptation of saccadic amplitude in humans and monkeys. Invest Ophthalmol Vis Sci 30:1883–1893

    CAS  PubMed  Google Scholar 

  • Atsma J, Maij F, Koppen M et al (2016) Causal inference for spatial constancy across saccades. PLoS Comput Biol 12:e1004766

    PubMed  PubMed Central  Google Scholar 

  • Baddeley AD, Hitch G (1974) Working memory. Psychol Learn Motiv 8:47–89

    Google Scholar 

  • Bahcall DO, Kowler E (2000) The control of saccadic adaptation: implications for the scanning of natural visual scenes. Vis Res 40:2779–2796

    CAS  PubMed  Google Scholar 

  • Barnes GR, Gresty MA (1973) Characteristics of eye movements to targets of short duration. Aerosp Med 44:1236–1240

    CAS  PubMed  Google Scholar 

  • Bays PM, Husain M (2008) Dynamic shifts of limited working memory resources in human vision. Science 321:851–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bays PM, Catalao RFG, Husain M (2009) The precision of visual working memory is set by allocation of a shared resource. J Vis 9(7):1–711

    PubMed  Google Scholar 

  • Bays PM, Wu EY, Husain M (2011) Storage and binding of object features in visual working memory. Neuropsychologia 49:1622–1631

    PubMed  Google Scholar 

  • Becker W (1976) Do correction saccades depend exclusively on retinal feedback? A note on the possible role of non-retinal feedback. Vis Res 16:425–427

    CAS  PubMed  Google Scholar 

  • Becker W, Fuchs AF (1969) Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vis Res 9:1247–1258

    CAS  PubMed  Google Scholar 

  • Boehnke SE, Munoz DP (2008) On the importance of the transient visual response in the superior colliculus. Curr Opin Neurobiol 18:544–551

    CAS  PubMed  Google Scholar 

  • Bonnetblanc F, Baraduc P (2007) Saccadic adaptation without retinal postsaccadic error. Neuroreport 18:1399–1402

    PubMed  Google Scholar 

  • Bremmer F, Kubischik M, Hoffmann K-P, Krekelberg B (2009) Neural dynamics of saccadic suppression. J Neurosci 29:12374–12383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridgeman B (2007) Efference copy and its limitations. Comput Biol Med 37:924–929

    PubMed  Google Scholar 

  • Bridgeman B, Mayer M (1983) Failure to integrate visual information from successive fixations. Bull Psychon Soc 21:285–286

    Google Scholar 

  • Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vis Res 15:719–722

    CAS  PubMed  Google Scholar 

  • Bridgeman B, Van Der Heijden CAH, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–292

    Google Scholar 

  • Burr DC, Morrone MC (2011) Spatiotopic coding and remapping in humans. Philos Trans R Soc Lond Ser B Biol Sci 366:504–515

    Google Scholar 

  • Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371:511–513

    CAS  PubMed  Google Scholar 

  • Castet E, Jeanjean S, Masson GS (2002) Motion perception of saccade-induced retinal translation. Proc Natl Acad Sci 99:15159–15163

    CAS  PubMed  Google Scholar 

  • Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14:147–153

    PubMed  PubMed Central  Google Scholar 

  • Collins T, Wallman J (2012) The relative importance of retinal error and prediction in saccadic adaptation. J Neurophysiol 107:3342–3348

    PubMed  PubMed Central  Google Scholar 

  • Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24:87–114 Discussion 114–185

    CAS  PubMed  Google Scholar 

  • Cox DD, Meier P, Oertelt N, DiCarlo JJ (2005) “Breaking” position-invariant object recognition. Nat Neurosci 8:1145–1147

    CAS  PubMed  Google Scholar 

  • Currie CB, McConkie GW, Carlson-Radvansky LA, Irwin DE (2000) The role of the saccade target object in the perception of a visually stable world. Percept Psychophys 62:673–683

    CAS  PubMed  Google Scholar 

  • Demeyer M, de Graef P, Wagemans J, Verfaillie K (2010a) Parametric integration of visual form across saccades. Vis Res 50:1225–1234

    PubMed  Google Scholar 

  • Demeyer M, Graef PD, Wagemans J, Verfaillie K (2010b) Object form discontinuity facilitates displacement discrimination across saccades. J Vis 10:17–17

    PubMed  Google Scholar 

  • Deubel H (1991) Adaptive control of saccade metrics. In: Presbyopia research. Springer, Boston, pp 93–100

    Google Scholar 

  • Deubel H (1995) Is saccadic adaptation context-specific? In: Findlay JM, Walker R, Kentridge RW (eds) Studies in visual information processing. North-Holland, Amsterdam, pp 177–187

    Google Scholar 

  • Deubel H (2004) Localization of targets across saccades: role of landmark objects. Vis Cogn 11:173–202

    Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837

    CAS  PubMed  Google Scholar 

  • Deubel H, Wolf W, Hauske G (1982) Corrective saccades: effect of shifting the saccade goal. Vis Res 22:353–364

    CAS  PubMed  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis Res 36:985–996

    CAS  PubMed  Google Scholar 

  • Deubel H, Bridgeman B, Schneider WX (1998) Immediate post-saccadic information mediates space constancy. Vis Res 38:3147–3159

    CAS  PubMed  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (2002) Transsaccadic memory of position and form. Prog Brain Res 140:165–180

    PubMed  Google Scholar 

  • Diamond MR, Ross J, Morrone MC (2000) Extraretinal control of saccadic suppression. J Neurosci 20:3449–3455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ditterich J, Eggert T, Straube A (2000) The role of the attention focus in the visual information processing underlying saccadic adaptation. Vis Res 40:1125–1134

    CAS  PubMed  Google Scholar 

  • Dowiasch S, Marx S, Einhäuser W, Bremmer F (2015) Effects of aging on eye movements in the real world. Front Hum Neurosci 9:46

    PubMed  PubMed Central  Google Scholar 

  • Fracasso A, Caramazza A, Melcher D (2010) Continuous perception of motion and shape across saccadic eye movements. J Vis 10:14

    PubMed  Google Scholar 

  • Ganmor E, Landy MS, Simoncelli EP (2015) Near-optimal integration of orientation information across saccades. J Vis 15:8

    PubMed  PubMed Central  Google Scholar 

  • Gegenfurtner KR, Sperling G (1993) Information transfer in iconic memory experiments. J Exp Psychol Hum Percept Perform 19:845–866

    CAS  PubMed  Google Scholar 

  • Germeys F, de Graef P, Verfaillie K (2002) Transsaccadic perception of saccade target and flanker objects. J Exp Psychol Hum Percept Perform 28:868–883

    PubMed  Google Scholar 

  • Germeys F, Graef PD, Eccelpoel CV, Verfaillie K (2010) The visual analog: evidence for a preattentive representation across saccades. J Vis 10:9

    PubMed  Google Scholar 

  • Gigerenzer G, Brighton H (2009) Homo heuristicus: why biased minds make better inferences. Top Cogn Sci 1:107–143

    PubMed  Google Scholar 

  • Gordon RD, Irwin DE (1998) Eye movements, attention and trans-saccadic memory. Vis Cogn 5:127–155

    Google Scholar 

  • Gorgoraptis N, Catalao RFG, Bays PM, Husain M (2011) Dynamic updating of working memory resources for visual objects. J Neurosci 31:8502–8511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gysen V, de Graef P, Verfaillie K (2002a) Detection of intrasaccadic displacements and depth rotations of moving objects. Vis Res 42:379–391

    PubMed  Google Scholar 

  • Gysen V, Verfaillie K, de Graef P (2002b) Transsaccadic perception of translating objects: effects of landmark objects and visual field position. Vis Res 42:1785–1796

    PubMed  Google Scholar 

  • Hanning NM, Jonikaitis D, Deubel H, Szinte M (2015) Oculomotor selection underlies feature retention in visual working memory. J Neurophysiol 115:1071–1076

    PubMed  Google Scholar 

  • Harrison WJ, Bex PJ (2014) Integrating retinotopic features in spatiotopic coordinates. J Neurosci 34:7351–7360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayhoe M, Lachter J, Feldman J (1991) Integration of form across saccadic eye movements. Perception 20:393–402

    CAS  PubMed  Google Scholar 

  • Henderson JM (1992) Identifying objects across saccades: effects of extrafoveal preview and flanker object context. J Exp Psychol Learn Mem Cogn 18:521–530

    CAS  PubMed  Google Scholar 

  • Henderson JM (1994) Two representational systems in dynamic visual identification. J Exp Psychol Gen 123:410–426

    CAS  PubMed  Google Scholar 

  • Henderson JM, Anes MD (1994) Roles of object-file review and type priming in visual identification within and across eye fixations. J Exp Psychol Hum Percept Perform 20:826–839

    CAS  PubMed  Google Scholar 

  • Henderson JM, Hollingworth A (1999) The role of fixation position in detecting scene changes across saccades. Psychol Sci 10:438–443

    Google Scholar 

  • Henderson JM, Hollingworth A (2003) Eye movements and visual memory: detecting changes to saccade targets in scenes. Percept Psychophys 65:58–71

    PubMed  Google Scholar 

  • Henderson JM, Siefert ABC (1999) The influence of enantiomorphic transformation on transsaccadic object integration. J Exp Psychol Hum Percept Perform 25:243–255

    Google Scholar 

  • Henderson JM, Siefert ABC (2001) Types and tokens in transsaccadic object identification: effects of spatial position and left-right orientation. Psychon Bull Rev 8:753–760

    CAS  PubMed  Google Scholar 

  • Henderson JM, Pollatsek A, Rayner K (1987) Effects of foveal priming and extrafoveal preview on object identification. J Exp Psychol Hum Percept Perform 13:449–463

    CAS  PubMed  Google Scholar 

  • Herman JP, Blangero A, Madelain L et al (2013) Saccade adaptation as a model of flexible and general motor learning. Exp Eye Res 114:6–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins E, Rayner K (2015) Transsaccadic processing: stability, integration, and the potential role of remapping. Atten Percept Psychophys 77:3–27

    PubMed  Google Scholar 

  • Hollingworth A, Luck SJ (2009) The role of visual working memory in the control of gaze during visual search. Atten Percept Psychophys 71:936–949

    PubMed  PubMed Central  Google Scholar 

  • Hollingworth A, Richard AM, Luck SJ (2008) Understanding the function of visual short-term memory: transsaccadic memory, object correspondence, and gaze correction. J Exp Psychol Gen 137:163–181

    PubMed  PubMed Central  Google Scholar 

  • Hollingworth A, Matsukura M, Luck SJ (2013) Visual working memory modulates low-level saccade target selection: evidence from rapidly generated saccades in the global effect paradigm. J Vis 13:4

    PubMed  PubMed Central  Google Scholar 

  • Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72:27–53

    PubMed  Google Scholar 

  • Hübner C, Schütz AC (2017) Numerosity estimation benefits from transsaccadic information integration. J Vis 17:12

    PubMed  PubMed Central  Google Scholar 

  • Irwin DE (1992) Memory for position and identity across eye movements. J Exp Psychol Learn Mem Cogn 18:307–317

    Google Scholar 

  • Irwin DE (1996) Integrating information across saccadic eye movements. Curr Dir Psychol Sci 5:94–100

    Google Scholar 

  • Irwin DE, Andrews RV (1996) Integration and accumulation of information across saccadic eye movements. Atten Perform 16:122–155

    Google Scholar 

  • Irwin DE, Zelinsky GJ (2002) Eye movements and scene perception: memory for things observed. Percept Psychophys 64:882–895

    PubMed  Google Scholar 

  • Irwin DE, Yantis S, Jonides J (1983) Evidence against visual integration across saccadic eye movements. Percept Psychophys 34:49–57

    CAS  PubMed  Google Scholar 

  • Irwin DE, Zacks JL, Brown JS (1990) Visual memory and the perception of a stable visual environment. Percept Psychophys 47:35–46

    CAS  PubMed  Google Scholar 

  • Jeyachandra J, Nam Y, Kim Y et al (2018) Transsaccadic memory of multiple spatially variant and invariant object features. J Vis 18:6

    PubMed  Google Scholar 

  • Jonides J, Irwin DE, Yantis S (1982) Integrating visual information from successive fixations. Science 215:192–194

    CAS  PubMed  Google Scholar 

  • Jonides J, Irwin DE, Yantis S (1983) Failure to integrate information from successive fixations. Science 222:188

    CAS  PubMed  Google Scholar 

  • Kahneman D, Treisman A, Gibbs BJ (1992) The reviewing of object files: object-specific integration of information. Cogn Psychol 24:175–219

    CAS  PubMed  Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev. Psychol 55:271–304

    PubMed  Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    CAS  PubMed  Google Scholar 

  • Li N, DiCarlo JJ (2008) Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321:1502–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Matin L (1990) The influence of saccade length on the saccadic suppression of displacement detection. Percept Psychophys 48:453–458

    CAS  PubMed  Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–281

    CAS  PubMed  Google Scholar 

  • Ma WJ, Husain M, Bays PM (2014) Changing concepts of working memory. Nat Neurosci 17:347–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DM (1972) Visual stability. Invest Ophthalmol Vis Sci 11:518–524

    CAS  Google Scholar 

  • Madelain L, Harwood MR, Herman JP, Wallman J (2010) Saccade adaptation is unhampered by distractors. J Vis 10:29–29

    PubMed  Google Scholar 

  • Madelain L, Herman JP, Harwood MR (2013) Saccade adaptation goes for the goal. J Vis 13:9

    PubMed  PubMed Central  Google Scholar 

  • McConkie GW, Currie CB (1996) Visual stability across saccades while viewing complex pictures. J Exp Psychol Hum Percept Perform 22:563–581

    CAS  PubMed  Google Scholar 

  • McConkie GW, Rayner K (1976) Asymmetry of the perceptual span in reading. Bull Psychon Soc 8:365–368

    Google Scholar 

  • Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12:466–473

    PubMed  Google Scholar 

  • Melcher D, Kowler E (2001) Visual scene memory and the guidance of saccadic eye movements. Vis Res 41:3597–3611

    CAS  PubMed  Google Scholar 

  • Melcher D, Morrone MC (2015) Nonretinotopic visual processing in the brain. Vis Neurosci 32:E017

    PubMed  Google Scholar 

  • Melcher D, Piazza M (2011) The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS One 6:e29296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    CAS  PubMed  Google Scholar 

  • Miller JM, Anstis T, Templeton WB (1981) Saccadic plasticity: parametric adaptive control by retinal feedback. J Exp Psychol Hum Percept Perform 7:356–366

    CAS  PubMed  Google Scholar 

  • Munoz DP, Broughton JR, Goldring JE, Armstrong IT (1998) Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 121:391–400

    CAS  PubMed  Google Scholar 

  • Munuera J, Morel P, Duhamel J-R, Deneve S (2009) Optimal sensorimotor control in eye movement sequences. J Neurosci 29:3026–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeier M, Crawford JD, Tweed DB (2003) Optimal transsaccadic integration explains distorted spatial perception. Nature 422:76–80

    CAS  PubMed  Google Scholar 

  • Niemeier M, Crawford JD, Tweed DB (2007) Optimal inference explains dimension-specific contractions of spatial perception. Exp Brain Res 179:313–323

    PubMed  Google Scholar 

  • Noto CT, Robinson FR (2001) Visual error is the stimulus for saccade gain adaptation. Cogn Brain Res 12:301–305

    CAS  Google Scholar 

  • O’Regan JK, Lévy-Schoen A (1983) Integrating visual information from successive fixations: does trans-saccadic fusion exist? Vis Res 23:765–768

    PubMed  Google Scholar 

  • O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–973 Discussion 973–1031

    PubMed  Google Scholar 

  • Ohl S, Rolfs M (2017) Saccadic eye movements impose a natural bottleneck on visual short-term memory. J Exp Psychol Learn Mem Cogn 43:736–748

    PubMed  Google Scholar 

  • Ohl S, Rolfs M (2018) Saccadic selection of stabilized items in visuospatial working memory. Conscious Cogn 64:32–44

    PubMed  Google Scholar 

  • Ohl S, Brandt SA, Kliegl R (2013) The generation of secondary saccades without postsaccadic visual feedback. J Vis 13:11

    PubMed  Google Scholar 

  • Oostwoud Wijdenes L, Marshall L, Bays PM (2015) Evidence for optimal integration of visual feature representations across saccades. J Neurosci 35:10146–10153

    PubMed  PubMed Central  Google Scholar 

  • Ostendorf F, Dolan RJ (2015) Integration of retinal and extraretinal information across eye movements. PLoS One 10:e0116810

    PubMed  PubMed Central  Google Scholar 

  • Paeye C, Collins T, Cavanagh P, Herwig A (2018) Calibration of peripheral perception of shape with and without saccadic eye movements. Atten Percept Psychophys 80:723–737. https://doi.org/10.3758/s13414-017-1478-3

    Article  PubMed  Google Scholar 

  • Pashler H (1988) Familiarity and visual change detection. Percept Psychophys 44:369–378

    CAS  PubMed  Google Scholar 

  • Pélisson D, Alahyane N, Panouillères M, Tilikete C (2010) Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev 34:1103–1120

    PubMed  Google Scholar 

  • Pelli DG, Tillman KA (2008) The uncrowded window of object recognition. Nat Neurosci 11:1129–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penny W (2012) Bayesian models of brain and behaviour. ISRN Biomath 785791:1–19. https://doi.org/10.5402/2012/785791

    Article  Google Scholar 

  • Peterson MS, Kramer AF, Irwin DE (2004) Covert shifts of attention precede involuntary eye movements. Percept Psychophys 66:398–405

    PubMed  Google Scholar 

  • Pollatsek A, Rayner K, Collins WE (1984) Integrating pictorial information across eye movements. J Exp Psychol Gen 113:426–442

    CAS  PubMed  Google Scholar 

  • Pollatsek A, Rayner K, Henderson JM (1990) Role of spatial location in integration of pictorial information across saccades. J Exp Psychol Hum Percept Perform 16:199–210

    CAS  PubMed  Google Scholar 

  • Poth CH, Schneider WX (2016) Breaking object correspondence across saccades impairs object recognition: the role of color and luminance. J Vis 16:1

    PubMed  Google Scholar 

  • Poth CH, Herwig A, Schneider WX (2015) Breaking object correspondence across saccadic eye movements deteriorates object recognition. Front Syst Neurosci 9:176

    PubMed  PubMed Central  Google Scholar 

  • Prablanc C, Massé D, Echallier JF (1978) Error-correcting mechanisms in large saccades. Vis Res 18:557–560

    CAS  PubMed  Google Scholar 

  • Prime SL, Niemeier M, Crawford JD (2006) Transsaccadic integration of visual features in a line intersection task. Exp Brain Res 169:532–548

    PubMed  Google Scholar 

  • Prime SL, Tsotsos L, Keith GP, Crawford JD (2007) Visual memory capacity in transsaccadic integration. Exp Brain Res 180:609–628

    PubMed  Google Scholar 

  • Prime SL, Vesia M, Crawford JD (2011) Cortical mechanisms for trans-saccadic memory and integration of multiple object features. Philos Trans R Soc B 366:540–553

    Google Scholar 

  • Prsa M, Thier P (2011) The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. Eur J Neurosci 33:2114–2128

    PubMed  Google Scholar 

  • Rayner K, Pollatsek A (1983) Is visual information integrated across saccades? Percept Psychophys 34:39–48

    CAS  PubMed  Google Scholar 

  • Rich D, Cazettes F, Wang Y et al (2015) Neural representation of probabilities for Bayesian inference. J Comput Neurosci 38:315–323

    PubMed  PubMed Central  Google Scholar 

  • Richard AM, Luck SJ, Hollingworth A (2008) Establishing object correspondence across eye movements: flexible use of spatiotemporal and surface feature information. Cognition 109:66–88

    PubMed  PubMed Central  Google Scholar 

  • Robinson F, Noto C, Watanabe S (2000) Effect of visual background on saccade adaptation in monkeys. Vis Res 40:2359–2367

    CAS  PubMed  Google Scholar 

  • Rolfs M, Carrasco M (2012) Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. J Neurosci 32:13744–13752a

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121

    CAS  PubMed  Google Scholar 

  • Schneider WX (2013) Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory. Philos Trans R Soc Lond Ser B Biol Sci 368:20130060

    Google Scholar 

  • Schut MJ, Fabius JH, der Stoep NV, der Stigchel SV (2017) Object files across eye movements: previous fixations affect the latencies of corrective saccades. Atten Percept Psychophys 79:138–153

    PubMed  Google Scholar 

  • Shao N, Li J, Shui R et al (2010) Saccades elicit obligatory allocation of visual working memory. Mem Cogn 38:629–640

    Google Scholar 

  • Shebilske WL (1976) Extraretinal information in corrective saccades and inflow vs outflow theories of visual direction constancy. Vis Res 16:621–628

    CAS  PubMed  Google Scholar 

  • Siegelmann HT, Holzman LE (2010) Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference. Chaos 20:037112

    PubMed  Google Scholar 

  • Souto D, Gegenfurtner KR, Schütz AC (2016) Saccade adaptation and visual uncertainty. Front Hum Neurosci 10:227

    PubMed  PubMed Central  Google Scholar 

  • Sperling G (1960) The information available in brief visual presentations. Psychol Monogr Gen Appl 74:1–29

    Google Scholar 

  • Strasburger H, Rentschler I, Jüttner M (2011) Peripheral vision and pattern recognition: a review. J Vis 11:13

    PubMed  Google Scholar 

  • Szinte M, Cavanagh P (2011) Spatiotopic apparent motion reveals local variations in space constancy. J Vis 11:4

    PubMed  Google Scholar 

  • Tas AC, Moore CM, Hollingworth A (2012) An object-mediated updating account of insensitivity to transsaccadic change. J Vis 12:18

    PubMed  PubMed Central  Google Scholar 

  • Tas AC, Luck SJ, Hollingworth A (2016) The relationship between visual attention and visual working memory encoding: a dissociation between covert and overt orienting. J Exp Psychol Hum Percept Perform 42:1121–1138

    PubMed  PubMed Central  Google Scholar 

  • Tatler BW, Land MF (2011) Vision and the representation of the surroundings in spatial memory. Philos Trans R Soc Lond Ser B Biol Sci 366:596–610

    Google Scholar 

  • Tatler BW, Gilchrist ID, Rusted J (2003) The time course of abstract visual representation. Perception 32:579–592

    PubMed  Google Scholar 

  • Tian J, Ying HS, Zee DS (2013) Revisiting corrective saccades: role of visual feedback. Vis Res 89:54–64

    PubMed  Google Scholar 

  • van den Berg R, Shin H, Chou W-C et al (2012) Variability in encoding precision accounts for visual short-term memory limitations. Proc Natl Acad Sci 109:8780–8785

    PubMed  Google Scholar 

  • van Opstal AJ, van Gisbergen JAM (1989) Scatter in the metrics of saccades and properties of the collicular motor map. Vis Res 29:1183–1196

    PubMed  Google Scholar 

  • Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80:2405–2416

    CAS  PubMed  Google Scholar 

  • Warabi T, Kase M, Kato T (1984) Effect of aging on the accuracy of visually guided saccadic eye movement. Ann Neurol 16:449–454

    CAS  PubMed  Google Scholar 

  • Weber RB, Daroff RB (1972) Corrective movements following refixation saccades: type and control system analysis. Vis Res 12:467–475

    CAS  PubMed  Google Scholar 

  • Weiß K, Schneider WX, Herwig A (2015) A “blanking effect” for surface features: transsaccadic spatial-frequency discrimination is improved by postsaccadic blanking. Atten Percept Psychophys 77:1500–1506

    PubMed  Google Scholar 

  • Westheimer G (1954) Eye movement responses to a horizontally moving visual stimulus. AMA Arch Ophthalmol 52:932–941

    CAS  PubMed  Google Scholar 

  • Wexler M, Collins T (2014) Orthogonal steps relieve saccadic suppression. J Vis 14:13

    PubMed  Google Scholar 

  • Wheeler ME, Treisman AM (2002) Binding in short-term visual memory. J Exp Psychol Gen 131:48–64

    PubMed  Google Scholar 

  • Wittenberg M, Bremmer F, Wachtler T (2008) Perceptual evidence for saccadic updating of color stimuli. J Vis 8:9

    PubMed  Google Scholar 

  • Wolf C, Schütz AC (2015) Trans-saccadic integration of peripheral and foveal feature information is close to optimal. J Vis 15:1

    PubMed  Google Scholar 

  • Wolf W, Hauske G, Lupp U (1980) Interaction of pre- and postsaccadic patterns having the same coordinates in space. Vis Res 20:117–125

    CAS  PubMed  Google Scholar 

  • Wong AL, Shelhamer M (2011) Saccade adaptation improves in response to a gradually introduced stimulus perturbation. Neurosci Lett 500:207–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48:2070–2089

    PubMed  Google Scholar 

  • Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453:233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Chen A, Rasch MJ, Wu S (2016) Decentralized multisensory information integration in neural systems. J Neurosci 36:532–547

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Karl Gegenfurtner, Heiner Deubel, Martin Rolfs, Eckart Zimmerman, and Sebastian Schneegans for their helpful comments on a draft version of this manuscript. This work was supported by the Wellcome Trust (grant number 106926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Aagten-Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aagten-Murphy, D., Bays, P.M. (2018). Functions of Memory Across Saccadic Eye Movements. In: Hodgson, T. (eds) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. Springer, Cham. https://doi.org/10.1007/7854_2018_66

Download citation

Publish with us

Policies and ethics