Skip to main content

Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation

  • Chapter
  • First Online:
Biomarkers in Psychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 40))

Abstract

Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain C, McNeely HE, He Y, Christensen BK, West R (2002) Neurophysiological evidence of error-monitoring deficits in patients with Schizophrenia. Cereb Cortex 12(8):840–846

    PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM-5

    Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452

    PubMed  PubMed Central  Google Scholar 

  • Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB (2014) Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci 14(1):388–406

    PubMed  PubMed Central  Google Scholar 

  • Andre JM, Cordero KA, Gould TJ (2012) Comparison of the performance of DBA/2 and C57BL/6 mice in transitive inference and foreground and background contextual fear conditioning. Behav Neurosci 126(2):249–257

    PubMed  PubMed Central  Google Scholar 

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110

    CAS  PubMed  Google Scholar 

  • April LB, Bruce K, Galizio M (2013) The magic number 70 (plus or minus 20): variables determining performance in the rodent odor span task. Learn Motiv 44(3):143–158

    PubMed  PubMed Central  Google Scholar 

  • Arce E, Leland DS, Miller DA, Simmons AN, Winternheimer KC, Paulus MP (2006) Individuals with schizophrenia present hypo- and hyperactivation during implicit cueing in an inhibitory task. NeuroImage 32(2):704–713

    PubMed  Google Scholar 

  • Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13(3):214–228

    PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    PubMed  Google Scholar 

  • Asarnow RF, MacCrimmon DJ (1978) Residual performance deficit in clinically remitted schizophrenics: a marker of schizophrenia? J Abnorm Psychol 87(6):597–608

    CAS  PubMed  Google Scholar 

  • Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short-term memory. J Verbal Learn Verbal Behav 14(6):575–589

    Google Scholar 

  • Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12(5):193–200

    PubMed  Google Scholar 

  • Badre D, D'Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19(12):2082–2099

    PubMed  Google Scholar 

  • Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL et al (2014) Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiat 71(2):109–118

    Google Scholar 

  • Barbalat G, Chambon V, Franck N, Koechlin E, Farrer C (2009) Organization of cognitive control within the lateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 66(4):377–386

    PubMed  Google Scholar 

  • Barch DM, Dowd EC (2010) Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull 36(5):919–934

    PubMed  PubMed Central  Google Scholar 

  • Barch DM, Smith E (2008) The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry 64(1):11–17

    PubMed  PubMed Central  Google Scholar 

  • Barch DM, Braver TS, Nystrom LE, Forman SD, Noll DC, Cohen JD (1997) Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35(10):1373–1380

    CAS  PubMed  Google Scholar 

  • Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A 3rd, Noll DC et al (2001) Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58(3):280–288

    CAS  PubMed  Google Scholar 

  • Barch DM, Berman MG, Engle R, Jones JH, Jonides J, Macdonald A 3rd et al (2009) CNTRICS final task selection: working memory. Schizophr Bull 35(1):136–152

    PubMed  Google Scholar 

  • Barch DM, Carter CS, Dakin SC, Gold J, Luck SJ, Macdonald A 3rd et al (2012) The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophr Bull 38(1):135–143

    PubMed  Google Scholar 

  • Barnes SA, Young JW, Bate ST, Neill JC (2016) Dopamine D1 receptor activation improves PCP-induced performance disruption in the 5C-CPT by reducing inappropriate responding. Behav Brain Res 300:45–55

    CAS  PubMed  Google Scholar 

  • Baxter MG (2010) “I’ve seen it all before”: explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav Neurosci 124(5):706–709

    PubMed  Google Scholar 

  • Bearden CE, Rosso IM, Hollister JM, Sanchez LE, Hadley T, Cannon TD (2000) A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophr Bull 26(2):395–410

    CAS  PubMed  Google Scholar 

  • Bellgrove MA, Chambers CD, Vance A, Hall N, Karamitsios M, Bradshaw JL (2006) Lateralized deficit of response inhibition in early-onset schizophrenia. Psychol Med 36(4):495–505

    PubMed  Google Scholar 

  • Benedict RH, Groninger L, Schretlen D, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol Assess 8(2):145–153

    Google Scholar 

  • Berg EL, Copping NA, Rivera JK, Pride MC, Careaga M, Bauman MD et al (2018) Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Res. https://doi.org/10.1002/aur.1925

    PubMed  PubMed Central  Google Scholar 

  • Bhakta SG, Young JW (2017) The 5 choice continuous performance test (5C-CPT): a novel tool to assess cognitive control across species. J Neurosci Methods 292:53–60

    PubMed  PubMed Central  Google Scholar 

  • Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15(11):527–536

    PubMed  PubMed Central  Google Scholar 

  • Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796

    PubMed  PubMed Central  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bismark AW, Thomas ML, Tarasenko M, Shiluk AL, Rackelmann SY, Young JW, Light GA. Transl Psychiatry. 2018 Apr 12;8(1):80

    Google Scholar 

  • Blackwell AD, Sahakian BJ, Vesey R, Semple JM, Robbins TW, Hodges JR (2004) Detecting dementia: novel neuropsychological markers of preclinical Alzheimer’s disease. Dement Geriatr Cogn Disord 17(1–2):42–48

    PubMed  Google Scholar 

  • Bonkalo A (1956) Emil Kraepelin; 1856–1926. Can Med Assoc J 74(10):835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8(12):539–546

    PubMed  Google Scholar 

  • Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114(2):376–397

    PubMed  Google Scholar 

  • Boulay D, Ho-Van S, Bergis O, Avenet P, Griebel G (2013) Phencyclidine decreases tickling-induced 50-kHz ultrasound vocalizations in juvenile rats: a putative model of the negative symptoms of schizophrenia? Behav Pharmacol 24(7):543–551

    CAS  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343

    CAS  PubMed  Google Scholar 

  • Broadbent DE, Broadbent MH (1987) From detection to identification: response to multiple targets in rapid serial visual presentation. Percept Psychophys 42(2):105–113

    CAS  PubMed  Google Scholar 

  • Brown MF, Moore JA (1997) In the dark II: spatial choice when access to extrinsic spatial cues is eliminated. Anim Learn Behav 25(3):335–346

    Google Scholar 

  • Bunge SA, Ochsner KN, Desmond JE, Glover GH, Gabrieli JD (2001) Prefrontal regions involved in keeping information in and out of mind. Brain 124(Pt 10):2074–2086

    CAS  PubMed  Google Scholar 

  • Bussey TJ, Padain TL, Skillings EA, Winters BD, Morton AJ, Saksida LM (2008) The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn Mem 15(7):516–523

    PubMed  PubMed Central  Google Scholar 

  • Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KA, Nithianantharajah J et al (2012) New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62(3):1191–1203

    CAS  PubMed  Google Scholar 

  • Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31(7):1362–1370

    CAS  PubMed  Google Scholar 

  • Cannon TD, van Erp TG, Huttunen M, Lonnqvist J, Salonen O, Valanne L et al (1998) Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55(12):1084–1091

    CAS  PubMed  Google Scholar 

  • Cambridge Cognition (2017) CANTAB® [cognitive assessment software]. www.cantab.com

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9(3):361–380

    CAS  PubMed  Google Scholar 

  • Carlson ET, Simpson MM (1964) The definition of mental illness: Benjamin Rush (1745–1813). Am J Psychiatry 121:209–214

    CAS  PubMed  Google Scholar 

  • Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN et al (1997) A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. J Cogn Neurosci 9(6):835–847

    CAS  PubMed  Google Scholar 

  • Cashdollar N, Malecki U, Rugg-Gunn FJ, Duncan JS, Lavie N, Duzel E (2009) Hippocampus-dependent and -independent theta-networks of active maintenance. Proc Natl Acad Sci U S A 106(48):20493–20498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervellione KL, Burdick KE, Cottone JG, Rhinewine JP, Kumra S (2007) Neurocognitive deficits in adolescents with schizophrenia: longitudinal stability and predictive utility for short-term functional outcome. J Am Acad Child Adolesc Psychiatry 46(7):867–878

    PubMed  Google Scholar 

  • Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, Hwu HG (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155(9):1214–1220

    CAS  PubMed  Google Scholar 

  • Chen WJ, Chang CH, Liu SK, Hwang TJ, Hwu HG, Multidimensional Psychopathology Group Research Project (2004) Sustained attention deficits in nonpsychotic relatives of schizophrenic patients: a recurrence risk ratio analysis. Biol Psychiatry 55(10):995–1000

    PubMed  Google Scholar 

  • Cheung V, Chen EY, Chen RY, Woo MF, Yee BK (2002) A comparison between schizophrenia patients and healthy controls on the expression of attentional blink in a rapid serial visual presentation (RSVP) paradigm. Schizophr Bull 28(3):443–458

    PubMed  Google Scholar 

  • Clayton NS, Griffiths DP, Emery NJ, Dickinson A (2001) Elements of episodic-like memory in animals. Philos Trans R Soc Lond Ser B Biol Sci 356(1413):1483–1491

    CAS  Google Scholar 

  • Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210(4466):207–210

    CAS  PubMed  Google Scholar 

  • Coles MG (1989) Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26(3):251–269

    CAS  PubMed  Google Scholar 

  • Colzato LS, Jongkees BJ, Sellaro R, Hommel B (2013) Working memory reloaded: tyrosine repletes updating in the N-back task. Front Behav Neurosci 7:200

    PubMed  PubMed Central  Google Scholar 

  • Cope ZA, Young JW (2017) The five-choice continuous performance task (5C-CPT): a cross-species relevant paradigm for assessment of vigilance and response inhibition in rodents. Curr Protoc Neurosci 78:9.56.1–9.56.18. https://doi.org/10.1002/cpns.20

    Article  Google Scholar 

  • Cope ZA, Powell SB, Young JW (2016) Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. Genes Brain Behav 15(1):27–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11(1):73–84

    CAS  PubMed  Google Scholar 

  • Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38(5):920–926

    PubMed  PubMed Central  Google Scholar 

  • Cui Y, Jin J, Zhang X, Xu H, Yang L, Du D et al (2011) Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 6(5):e20312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darrah JM, Stefani MR, Moghaddam B (2008) Interaction of N-methyl-D-aspartate and group 5 metabotropic glutamate receptors on behavioral flexibility using a novel operant set-shift paradigm. Behav Pharmacol 19(3):225–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R (2006) Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex 16(12):1771–1782

    PubMed  Google Scholar 

  • Davies DA, Greba Q, Howland JG (2013a) GluN2B-containing NMDA receptors and AMPA receptors in medial prefrontal cortex are necessary for odor span in rats. Front Behav Neurosci 7:183

    PubMed  PubMed Central  Google Scholar 

  • Davies DA, Molder JJ, Greba Q, Howland JG (2013b) Inactivation of medial prefrontal cortex or acute stress impairs odor span in rats. Learn Mem 20(12):665–669

    PubMed  Google Scholar 

  • Davies DA, Greba Q, Selk JC, Catton JK, Baillie LD, Mulligan SJ et al (2017) Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors. Learn Mem 24(10):524–531

    PubMed  PubMed Central  Google Scholar 

  • Davis H (1992) Transitive inference in rats (Rattus norvegicus). J Comp Psychol 106(4):342–349

    CAS  PubMed  Google Scholar 

  • Davis KE, Eacott MJ, Easton A, Gigg J (2013a) Episodic-like memory is sensitive to both Alzheimer’s-like pathological accumulation and normal ageing processes in mice. Behav Brain Res 254:73–82

    PubMed  Google Scholar 

  • Davis KE, Easton A, Eacott MJ, Gigg J (2013b) Episodic-like memory for what-where-which occasion is selectively impaired in the 3xTgAD mouse model of Alzheimer’s disease. J Alzheimers Dis 33(3):681–698

    CAS  PubMed  Google Scholar 

  • Delis DC, Cullum CM, Butters N, Cairns P, Prifitera A (1988) Wechsler memory scale-revised and California verbal learning test: convergence and divergence. Clin Neuropsychol 2(2):188–196

    Google Scholar 

  • Der-Avakian A, D’Souza MS, Pizzagalli DA, Markou A (2013) Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research. Transl Psychiatry 3:e297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2005) Integrated memory for objects, places, and temporal order: evidence for episodic-like memory in mice. Neurobiol Learn Mem 84(3):214–221

    PubMed  Google Scholar 

  • Derrfuss J, Brass M, von Cramon DY (2004) Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. NeuroImage 23(2):604–612

    PubMed  Google Scholar 

  • Devito LM, Kanter BR, Eichenbaum H (2010) The hippocampus contributes to memory expression during transitive inference in mice. Hippocampus 20(1):208–217

    PubMed  PubMed Central  Google Scholar 

  • Di Paola M, Caltagirone C, Fadda L, Sabatini U, Serra L, Carlesimo GA (2008) Hippocampal atrophy is the critical brain change in patients with hypoxic amnesia. Hippocampus 18(7):719–728

    PubMed  Google Scholar 

  • Dudchenko PA (2004) An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28(7):699–709

    PubMed  Google Scholar 

  • Dudchenko PA, Wood ER, Eichenbaum H (2000) Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. J Neurosci 20(8):2964–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dusek JA, Eichenbaum H (1997) The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci U S A 94(13):7109–7114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dux PE, Marois R (2009) The attentional blink: a review of data and theory. Atten Percept Psychophys 71(8):1683–1700

    PubMed  PubMed Central  Google Scholar 

  • Eacott MJ, Easton A, Zinkivskay A (2005) Recollection in an episodic-like memory task in the rat. Learn Mem 12(3):221–223

    PubMed  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199(3):439–456

    CAS  PubMed  Google Scholar 

  • Elvevag B, Cohen AS, Wolters MK, Whalley HC, Gountouna VE, Kuznetsova KA et al (2016) An examination of the language construct in NIMH’s research domain criteria: time for reconceptualization! Am J Med Genet B Neuropsychiatr Genet 171(6):904–919

    PubMed  PubMed Central  Google Scholar 

  • Elwood RW (1995) The California verbal learning test: psychometric characteristics and clinical application. Neuropsychol Rev 5(3):173–201

    CAS  PubMed  Google Scholar 

  • Emeric EE, Brown JW, Leslie M, Pouget P, Stuphorn V, Schall JD (2008) Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex. J Neurophysiol 99(2):759–772

    PubMed  Google Scholar 

  • Engelhardt KA, Fuchs E, Schwarting RKW, Wohr M (2017) Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: implications for mania models. Eur Neuropsychopharmacol 27(3):261–273

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113(3):509–519

    CAS  PubMed  Google Scholar 

  • Ergorul C, Eichenbaum H (2004) The hippocampus and memory for “what,” “where,” and “when”. Learn Mem 11(4):397–405

    PubMed  PubMed Central  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149

    Google Scholar 

  • Fallgatter AJ, Bartsch AJ, Zielasek J, Herrmann MJ (2003) Brain electrical dysfunction of the anterior cingulate in schizophrenic patients. Psychiatry Res 124(1):37–48

    PubMed  Google Scholar 

  • Fama R, Pitel AL, Sullivan EV (2012) Anterograde episodic memory in Korsakoff syndrome. Neuropsychol Rev 22(2):93–104

    PubMed  PubMed Central  Google Scholar 

  • Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14(3):340–347

    PubMed  Google Scholar 

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26(2):471–479

    PubMed  Google Scholar 

  • Fellini L, Morellini F (2013) Mice create what-where-when hippocampus-dependent memories of unique experiences. J Neurosci 33(3):1038–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fijal K, Popik P (2011) Phencyclidine disturbs relational memory in the transitive inference task. Behav Pharmacol 22(3):262–265

    CAS  PubMed  Google Scholar 

  • Finlayson K, Lampe JF, Hintze S, Wurbel H, Melotti L (2016) Facial indicators of positive emotions in rats. PLoS One 11(11):e0166446

    PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190(1):85–96

    PubMed  Google Scholar 

  • Ford JM, Gray M, Whitfield SL, Turken AU, Glover G, Faustman WO et al (2004) Acquiring and inhibiting prepotent responses in schizophrenia: event-related brain potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 61(2):119–129

    PubMed  Google Scholar 

  • Fornito A, Zalesky A, Pantelis C, Bullmore ET (2012) Schizophrenia, neuroimaging and connectomics. NeuroImage 62(4):2296–2314

    PubMed  Google Scholar 

  • Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5(5):458–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frith C (1996) The role of the prefrontal cortex in self-consciousness: the case of auditory hallucinations. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1505–1512

    CAS  Google Scholar 

  • Gabrieli JD, Brewer JB, Desmond JE, Glover GH (1997) Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276(5310):264–266

    CAS  PubMed  Google Scholar 

  • Galizio M, Deal M, Hawkey A, April B (2013) Working memory in the odor span task: effects of chlordiazepoxide, dizocilpine (MK801), morphine, and scopolamine. Psychopharmacology 225(2):397–406

    CAS  PubMed  Google Scholar 

  • Galizio M, April B, Deal M, Hawkey A, Panoz-Brown D, Prichard A et al (2016) Behavioral pharmacology of the odor span task: effects of flunitrazepam, ketamine, methamphetamine and methylphenidate. J Exp Anal Behav 106(3):173–194

    PubMed  Google Scholar 

  • Gardiner JM, Ramponi C, Richardson-Klavehn A (1998) Experiences of remembering, knowing, and guessing. Conscious Cogn 7(1):1–26

    CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3):117–154

    CAS  PubMed  Google Scholar 

  • Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P et al (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20(3):744–751

    CAS  PubMed  Google Scholar 

  • Giovanello KS, Schnyer DM, Verfaellie M (2004) A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus 14(1):5–8

    PubMed  Google Scholar 

  • Giralt A, Saavedra A, Alberch J, Perez-Navarro E (2012) Cognitive dysfunction in Huntington’s disease: humans, mouse models and molecular mechanisms. J Huntingtons Dis 1(2):155–173

    PubMed  Google Scholar 

  • Glahn DC, Knowles EE, Pearlson GD (2016) Genetics of cognitive control: implications for Nimh’s research domain criteria initiative. Am J Med Genet B Neuropsychiatr Genet 171B(1):111–120

    PubMed  Google Scholar 

  • Gold JM, Fuller RL, Robinson BM, Braun EL, Luck SJ (2007) Impaired top-down control of visual search in schizophrenia. Schizophr Res 94(1–3):148–155

    PubMed  PubMed Central  Google Scholar 

  • Gold JM, Barch DM, Carter CS, Dakin S, Luck SJ, MacDonald AW 3rd et al (2012) Clinical, functional, and intertask correlations of measures developed by the cognitive neuroscience test reliability and clinical applications for schizophrenia consortium. Schizophr Bull 38(1):144–152

    PubMed  Google Scholar 

  • Gooding DC, Braun JG, Studer JA (2006) Attentional network task performance in patients with schizophrenia-spectrum disorders: evidence of a specific deficit. Schizophr Res 88(1–3):169–178

    PubMed  Google Scholar 

  • Graf P, Schacter DL (1985) Implicit and explicit memory for new associations in normal and amnesic subjects. J Exp Psychol Learn Mem Cogn 11(3):501–518

    CAS  PubMed  Google Scholar 

  • Granholm E, Asarnow RF, Marder SR (1996) Dual-task performance operating characteristics, resource limitations, and automatic processing in schizophrenia. Neuropsychology 10(1):11–21

    Google Scholar 

  • Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6(3):316–322

    CAS  PubMed  Google Scholar 

  • Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ et al (2007) Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 64(11):1242–1250

    PubMed  Google Scholar 

  • Grove WM, Lebow BS, Clementz BA, Cerri A, Medus C, Iacono WG (1991) Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J Abnorm Psychol 100(2):115–121

    CAS  PubMed  Google Scholar 

  • Haggard P, Eimer M (1999) On the relation between brain potentials and the awareness of voluntary movements. Exp Brain Res 126(1):128–133

    CAS  PubMed  Google Scholar 

  • Hampton RR, Schwartz BL (2004) Episodic memory in nonhumans: what, and where, is when? Curr Opin Neurobiol 14(2):192–197

    CAS  PubMed  Google Scholar 

  • Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV (2001) Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 58(1):24–32

    CAS  PubMed  Google Scholar 

  • Heinrichs RW, Goldberg JO, Miles AA, McDermid Vaz S (2008) Predictors of medication competence in schizophrenia patients. Psychiatry Res 157(1–3):47–52

    PubMed  Google Scholar 

  • Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ (2016) The influence of genes on “positive valence systems” constructs: a systematic review. Am J Med Genet B Neuropsychiatr Genet 171B(1):92–110

    PubMed  Google Scholar 

  • Higa KK, Grim A, Kamenski ME, van Enkhuizen J, Zhou X, Li K et al (2017) Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice. Psychopharmacology 234(9–10):1573–1586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AJ, MacDonald A 3rd, Carter CS, Barch DM, Andrew Stenger V, Cohen JD (2005) Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr Res 76(2–3):199–206

    PubMed  Google Scholar 

  • Horner AJ, Gadian DG, Fuentemilla L, Jentschke S, Vargha-Khadem F, Duzel E (2012) A rapid, hippocampus-dependent, item-memory signal that initiates context memory in humans. Curr Biol 22(24):2369–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes ME, Fulham WR, Johnston PJ, Michie PT (2012) Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data. Biol Psychol 89(1):220–231

    PubMed  Google Scholar 

  • Huntley JD, Howard RJ (2010) Working memory in early Alzheimer’s disease: a neuropsychological review. Int J Geriatr Psychiatry 25(2):121–132

    CAS  PubMed  Google Scholar 

  • Hutton SB, Puri BK, Duncan LJ, Robbins TW, Barnes TR, Joyce EM (1998) Executive function in first-episode schizophrenia. Psychol Med 28(2):463–473

    CAS  PubMed  Google Scholar 

  • Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302(5642):120–122

    CAS  PubMed  Google Scholar 

  • Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonides J, Nee DE (2006) Brain mechanisms of proactive interference in working memory. Neuroscience 139(1):181–193

    CAS  PubMed  Google Scholar 

  • Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA (1998) Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci U S A 95(14):8410–8413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kane MJ, Meier ME, Smeekens BA, Gross GM, Chun CA, Silvia PJ et al (2016) Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. J Exp Psychol Gen 145(8):1017–1048

    PubMed  PubMed Central  Google Scholar 

  • Karayanidis F, Nicholson R, Schall U, Meem L, Fulham R, Michie PT (2006) Switching between univalent task-sets in schizophrenia: ERP evidence of an anticipatory task-set reconfiguration deficit. Clin Neurophysiol 117(10):2172–2190

    PubMed  Google Scholar 

  • Kerns JG, Cohen JD, MacDonald AW 3rd, Johnson MK, Stenger VA, Aizenstein H et al (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry 162(10):1833–1839

    PubMed  Google Scholar 

  • Kieffaber PD, O’Donnell BF, Shekhar A, Hetrick WP (2007) Event related brain potential evidence for preserved attentional set switching in schizophrenia. Schizophr Res 93(1–3):355–365

    PubMed  PubMed Central  Google Scholar 

  • Kiehl KA, Smith AM, Hare RD, Liddle PF (2000) An event-related potential investigation of response inhibition in schizophrenia and psychopathy. Biol Psychiatry 48(3):210–221

    CAS  PubMed  Google Scholar 

  • King J, Insanally M, Jin M, Martins AR, D’Amour JA, Froemke RC (2015) Rodent auditory perception: critical band limitations and plasticity. Neuroscience 296:55–65

    CAS  PubMed  Google Scholar 

  • Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55(4):352–358

    CAS  PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302(5648):1181–1185

    CAS  PubMed  Google Scholar 

  • Kolodziejczyk K, Parsons MP, Southwell AL, Hayden MR, Raymond LA (2014) Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 9(4):e94562

    PubMed  PubMed Central  Google Scholar 

  • Kumano H, Uka T (2013) Neuronal mechanisms of visual perceptual learning. Behav Brain Res 249:75–80

    PubMed  Google Scholar 

  • Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol 93(3):283–297

    PubMed  Google Scholar 

  • Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114(4):599–611

    PubMed  Google Scholar 

  • Lennane KJ (1986) Management of moderate to severe alcohol-related brain damage (Korsakoff’s syndrome). Med J Aust 145(3–4):136. 141–133

    CAS  PubMed  Google Scholar 

  • Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD et al (2013) Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin 2:590–599

    PubMed  PubMed Central  Google Scholar 

  • Levin ED, Conners CK, Silva D, Hinton SC, Meck WH, March J et al (1998) Transdermal nicotine effects on attention. Psychopharmacology 140(2):135–141

    CAS  PubMed  Google Scholar 

  • Licata AM, Kaufman MT, Raposo D, Ryan MB, Sheppard JP, Churchland AK (2017) Posterior parietal cortex guides visual decisions in rats. J Neurosci 37(19):4954–4966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin P, Wang X, Zhang B, Kirkpatrick B, Ongur D, Levitt JJ et al (2017) Functional dysconnectivity of the limbic loop of frontostriatal circuits in first-episode, treatment-naive schizophrenia. Hum Brain Mapp 39(2):747–757

    PubMed  PubMed Central  Google Scholar 

  • Linden DE, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R et al (2003) Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. NeuroImage 20(3):1518–1530

    PubMed  Google Scholar 

  • Lopez-Garcia P, Lesh TA, Salo T, Barch DM, MacDonald AW 3rd, Gold JM et al (2016) The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cogn Affect Behav Neurosci 16(1):164–175

    PubMed  PubMed Central  Google Scholar 

  • Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64(1):34–39

    PubMed  PubMed Central  Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390(6657):279–281

    CAS  PubMed  Google Scholar 

  • Luck SJ, Kappenman ES, Fuller RL, Robinson B, Summerfelt A, Gold JM (2009) Impaired response selection in schizophrenia: evidence from the P3 wave and the lateralized readiness potential. Psychophysiology 46(4):776–786

    PubMed  PubMed Central  Google Scholar 

  • Luck SJ, Mathalon DH, O’Donnell BF, Hamalainen MS, Spencer KM, Javitt DC et al (2011) A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biol Psychiatry 70(1):28–34

    PubMed  Google Scholar 

  • Lustig C, Kozak R, Sarter M, Young JW, Robbins TW (2013) CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 37(9 Pt B):2099–2110

    CAS  PubMed  Google Scholar 

  • MacDonald AW 3rd (2008) Building a clinically relevant cognitive task: case study of the AX paradigm. Schizophr Bull 34(4):619–628

    PubMed  PubMed Central  Google Scholar 

  • MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ et al (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 162(3):475–484

    PubMed  Google Scholar 

  • MacQueen DA, Drobes DJ (2017) Validation of the human odor span task: effects of nicotine. Psychopharmacology 234(19):2871–2882

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacQueen DA, Bullard L, Galizio M (2011) Effects of dizocilpine (MK801) on olfactory span in rats. Neurobiol Learn Mem 95(1):57–63

    CAS  PubMed  Google Scholar 

  • MacQueen DA, Dalrymple SR, Drobes DJ, Diamond DM (2016) Influence of pharmacological manipulations of NMDA and cholinergic receptors on working versus reference memory in a dual component odor span task. Learn Mem 23(6):270–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacQueen DA, Minassian A, Henry BL, Geyer MA, Young JW, Perry W (2018) Amphetamine modestly improves Conners’ continuous performance test performance in healthy adults. J Int Neuropsychol Soc 24:283–293

    PubMed  Google Scholar 

  • Magliero A, Bashore TR, Coles MG, Donchin E (1984) On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 21(2):171–186

    CAS  PubMed  Google Scholar 

  • Maguire EA, Vargha-Khadem F, Mishkin M (2001) The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain 124(Pt 6):1156–1170

    CAS  PubMed  Google Scholar 

  • Maier W, Franke P, Hain C, Kopp B, Rist F (1992) Neuropsychological indicators of the vulnerability to schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 16(5):703–715

    CAS  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111(1):22–41

    PubMed  Google Scholar 

  • Mathis KI, Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2011) The attentional blink in schizophrenia: isolating the perception/attention interface. J Psychiatr Res 45(10):1346–1351

    PubMed  PubMed Central  Google Scholar 

  • Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129(1):4–26

    CAS  PubMed  Google Scholar 

  • McGaughy J, Ross RS, Eichenbaum H (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153(1):63–71

    CAS  PubMed  Google Scholar 

  • Milienne-Petiot M, Kesby JP, Graves M, van Enkhuizen J, Semenova S, Minassian A et al (2017) The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: modeling bipolar mania. Neuropharmacology 113(Pt A):260–270

    CAS  PubMed  Google Scholar 

  • Miller GA (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97

    CAS  PubMed  Google Scholar 

  • Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Holt, New York, p 226

    Google Scholar 

  • Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66(8):811–822

    PubMed  PubMed Central  Google Scholar 

  • Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97(1–2):107–113

    CAS  PubMed  Google Scholar 

  • Monsell S (1978) Recency, immediate recognition memory, and reaction time. Cogn Psychol 10(4):465–501

    Google Scholar 

  • Montoya A, Pelletier M, Menear M, Duplessis E, Richer F, Lepage M (2006) Episodic memory impairment in Huntington’s disease: a meta-analysis. Neuropsychologia 44(10):1984–1994

    PubMed  Google Scholar 

  • Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):239–260

    Google Scholar 

  • Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38(4):365–395

    CAS  PubMed  Google Scholar 

  • Morris SE, Yee CM, Nuechterlein KH (2006) Electrophysiological analysis of error monitoring in schizophrenia. J Abnorm Psychol 115(2):239–250

    PubMed  Google Scholar 

  • Moustafa AA, Sherman SJ, Frank MJ (2008) A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 46(13):3144–3156

    PubMed  Google Scholar 

  • Murray BG, Davies DA, Molder JJ, Howland JG (2017) Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem 141:150–156

    CAS  PubMed  Google Scholar 

  • Myroshnychenko M, Seamans JK, Phillips AG, Lapish CC (2017) Temporal dynamics of hippocampal and medial prefrontal cortex interactions during the delay period of a working memory-guided foraging task. Cereb Cortex 27(11):5331–5342

    PubMed  PubMed Central  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20(2):106–118

    CAS  PubMed  Google Scholar 

  • Newman LA, Darling J, McGaughy J (2008) Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. Psychopharmacology 200(1):39–50

    CAS  PubMed  Google Scholar 

  • Niendam TA, Bearden CE, Rosso IM, Sanchez LE, Hadley T, Nuechterlein KH et al (2003) A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. Am J Psychiatry 160(11):2060–2062

    PubMed  Google Scholar 

  • Nieuwenstein M, Wyble B (2014) Beyond a mask and against the bottleneck: retroactive dual-task interference during working memory consolidation of a masked visual target. J Exp Psychol Gen 143(3):1409–1427

    PubMed  Google Scholar 

  • NIH (2011) Cognitive systems: workshop proceedings. National Institute of Mental Health, Rockville, pp 1–19

    Google Scholar 

  • NIH (2016) Behavioral assessment methods for RDoC constructs. National Institute of Mental Health, Rockville, pp 1–168

    Google Scholar 

  • Ninio A, Kahneman D (1974) Reaction time in focused and in divided attention. J Exp Psychol 103(3):394–399

    CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME, Gitlin M, Ventura J, Goldstein MJ, Snyder KS et al (1992) Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr Bull 18(3):387–425

    CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39

    PubMed  Google Scholar 

  • Nuechterlein KH, Pashler HE, Subotnik KL (2006) Translating basic attentional paradigms to schizophrenia research: reconsidering the nature of the deficits. Dev Psychopathol 18(3):831–851

    PubMed  Google Scholar 

  • Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD et al (2008) The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165(2):203–213

    PubMed  Google Scholar 

  • Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ et al (2011) Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull 37(Suppl 2):S33–S40

    PubMed  PubMed Central  Google Scholar 

  • Nuechterlein KH, Green MF, Calkins ME, Greenwood TA, Gur RE, Gur RC et al (2015) Attention/vigilance in schizophrenia: performance results from a large multi-site study of the consortium on the genetics of schizophrenia (COGS). Schizophr Res 163(1–3):38–46

    PubMed  PubMed Central  Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116

    Google Scholar 

  • Olvet DM, Hajcak G (2008) The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clin Psychol Rev 28(8):1343–1354

    PubMed  PubMed Central  Google Scholar 

  • Orellana G, Slachevsky A, Pena M (2012) Executive attention impairment in first-episode schizophrenia. BMC Psychiatry 12:154

    PubMed  PubMed Central  Google Scholar 

  • Pashler H (1994a) Dual-task interference in simple tasks: data and theory. Psychol Bull 116(2):220–244

    CAS  PubMed  Google Scholar 

  • Pashler H (1994b) Graded capacity-sharing in dual-task interference? J Exp Psychol Hum Percept Perform 20(2):330–342

    CAS  PubMed  Google Scholar 

  • Paxton JL, Barch DM, Racine CA, Braver TS (2008) Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb Cortex 18(5):1010–1028

    PubMed  Google Scholar 

  • Pelisson D, Alahyane N, Panouilleres M, Tilikete C (2010) Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev 34(8):1103–1120

    CAS  PubMed  Google Scholar 

  • Pergadia ML, Der-Avakian A, D’Souza MS, Madden PAF, Heath AC, Shiffman S et al (2014) Association between nicotine withdrawal and reward responsiveness in humans and rats. JAMA Psychiat 71(11):1238–1245

    Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    CAS  PubMed  Google Scholar 

  • Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH et al (2009) Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 35(1):19–31

    CAS  PubMed  Google Scholar 

  • Powell SB, Weber M, Geyer MA (2012) Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 12:251–318

    PubMed  PubMed Central  Google Scholar 

  • Psychological Corporation (2002) WAIS III/WMS III technical manual update. Psychological Corporation, San Antonio

    Google Scholar 

  • Quillian MR (1967) Word concepts: a theory and simulation of some basic semantic capabilities. Behav Sci 12(5):410–430

    CAS  PubMed  Google Scholar 

  • Ragland JD, Yoon J, Minzenberg MJ, Carter CS (2007) Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int Rev Psychiatry 19(4):417–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18(3):849–860

    CAS  PubMed  Google Scholar 

  • Rendall AR, Perrino PA, LoTurco JJ, Fitch RH (2017) Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. Genes Brain Behav. https://doi.org/10.1111/gbb.12450

  • Richardson JT (2007) Measures of short-term memory: a historical review. Cortex 43(5):635–650

    PubMed  Google Scholar 

  • Rippberger H, van Gaalen MM, Schwarting RK, Wohr M (2015) Environmental and pharmacological modulation of amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Curr Neuropharmacol 13(2):220–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163(3–4):362–380

    CAS  PubMed  Google Scholar 

  • Rosenberg A, Angelaki DE (2014) Reliability-dependent contributions of visual orientation cues in parietal cortex. Proc Natl Acad Sci U S A 111(50):18043–18048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rugg MD, Vilberg KL, Mattson JT, Yu SS, Johnson JD, Suzuki M (2012) Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia 50(13):3070–3079

    PubMed  PubMed Central  Google Scholar 

  • Sambeth A, Maes JH, Van Luijtelaar G, Molenkamp IB, Jongsma ML, Van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40(1):60–68

    PubMed  Google Scholar 

  • Saoud M, d'Amato T, Gutknecht C, Triboulet P, Bertaud JP, Marie-Cardine M et al (2000) Neuropsychological deficit in siblings discordant for schizophrenia. Schizophr Bull 26(4):893–902

    CAS  PubMed  Google Scholar 

  • Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28(10):1760–1769

    CAS  PubMed  Google Scholar 

  • Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15(8):1111–1121

    PubMed  Google Scholar 

  • Seli P, Risko EF, Smilek D, Schacter DL (2016) Mind-wandering with and without intention. Trends Cogn Sci 20(8):605–617

    PubMed  PubMed Central  Google Scholar 

  • Servan-Schreiber D, Cohen JD, Steingard S (1996) Schizophrenic deficits in the processing of context. A test of a theoretical model. Arch Gen Psychiatry 53(12):1105–1112

    CAS  PubMed  Google Scholar 

  • Shin DJ, Lee TY, Jung WH, Kim SN, Jang JH, Kwon JS (2015) Away from home: the brain of the wandering mind as a model for schizophrenia. Schizophr Res 165(1):83–89

    PubMed  Google Scholar 

  • Shinba T (1999) Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats: relation to event-related potential generation. Brain Res Cogn Brain Res 8(3):241–250

    CAS  PubMed  Google Scholar 

  • Siegel SJ, Connolly P, Liang Y, Lenox RH, Gur RE, Bilker WB et al (2003) Effects of strain, novelty, and NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology 28(4):675–682

    CAS  PubMed  Google Scholar 

  • Silverman JL, Gastrell PT, Karras MN, Solomon M, Crawley JN (2015) Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex 25(5):1133–1142

    CAS  PubMed  Google Scholar 

  • Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of Go/No-Go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46(1):224–232

    PubMed  Google Scholar 

  • Simola N (2015) Rat ultrasonic vocalizations and behavioral neuropharmacology: from the screening of drugs to the study of disease. Curr Neuropharmacol 13(2):164–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon JR, Berbaum K (1990) Effect of conflicting cues on information processing: the ‘Stroop effect’ vs. the ‘Simon effect’. Acta Psychol 73(2):159–170

    CAS  Google Scholar 

  • Singh N, Albert FW, Plyusnina I, Trut L, Pbo S, Harvati K (2017) Facial shape differences between rats selected for tame and aggressive behaviors. PLoS One 12(4):e0175043

    PubMed  PubMed Central  Google Scholar 

  • Smallwood J, Schooler JW (2015) The science of mind wandering: empirically navigating the stream of consciousness. Annu Rev Psychol 66:487–518

    PubMed  Google Scholar 

  • Smith C, Squire LR (2005) Declarative memory, awareness, and transitive inference. J Neurosci 25(44):10138–10146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82(3):171–177

    PubMed  Google Scholar 

  • Squire LR, Zola SM (1998) Episodic memory, semantic memory, and amnesia. Hippocampus 8(3):205–211

    CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11(4):170–175

    CAS  PubMed  Google Scholar 

  • Stirman J, Townsend LB, Smith S (2016) A touchscreen based global motion perception task for mice. Vis Res 127:74–83

    PubMed  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol Gen 18:643–662

    Google Scholar 

  • Subramaniam K, Vinogradov S (2013) Cognitive training for psychiatric disorders. Neuropsychopharmacology 38(1):242–243

    PubMed  Google Scholar 

  • Sullivan EV, Marsh L (2003) Hippocampal volume deficits in alcoholic Korsakoff’s syndrome. Neurology 61(12):1716–1719

    PubMed  Google Scholar 

  • Sumner JA, Powers A, Jovanovic T, Koenen KC (2016) Genetic influences on the neural and physiological bases of acute threat: a research domain criteria (RDoC) perspective. Am J Med Genet B Neuropsychiatr Genet 171B(1):44–64

    PubMed  Google Scholar 

  • Swerdlow NR (2011) Are we studying and treating schizophrenia correctly? Schizophr Res 130(1–3):1–10

    PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Caine SB, Braff DL, Geyer MA (1992) The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications. J Psychopharmacol 6(2):176–190

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51(2):139–154

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (1999) Cross-species studies of sensorimotor gating of the startle reflex. Ann N Y Acad Sci 877:202–216

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Tarasenko M, Bhakta SG, Talledo J, Alvarez AI, Hughes EL et al (2017) Amphetamine enhances gains in auditory discrimination training in adult schizophrenia patients. Schizophr Bull 43(4):872–880

    PubMed  Google Scholar 

  • Tait D, Brown V, Farovik A, Theobald D, Dalley J, Robbins T (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25(12):3719–3724

    PubMed  Google Scholar 

  • Talland GA (1960) Psychological studies of Korsakoff’s psychosis. VI. Memory and learning. J Nerv Ment Dis 130:366–385

    CAS  PubMed  Google Scholar 

  • Talpos JC, de-Wit L, Olley J, Riordan J, Steckler T (2016) Do wholes become more than the sum of their parts in the rodent (Rattus Norvegicus) visual system? A test case with the configural superiority effect. Eur J Neurosci 44(8):2593–2599

    PubMed  Google Scholar 

  • Thakkar KN, Schall JD, Boucher L, Logan GD, Park S (2011) Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol Psychiatry 69(1):55–62

    PubMed  Google Scholar 

  • Thermenos HW, Seidman LJ, Breiter H, Goldstein JM, Goodman JM, Poldrack R et al (2004) Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biol Psychiatry 55(5):490–500

    PubMed  Google Scholar 

  • Thompson-Schill SL, Jonides J, Marshuetz C, Smith EE, D’Esposito M, Kan IP et al (2002) Effects of frontal lobe damage on interference effects in working memory. Cogn Affect Behav Neurosci 2(2):109–120

    PubMed  Google Scholar 

  • Treisman A, Sato S (1990) Conjunction search revisited. J Exp Psychol Hum Percept Perform 16(3):459–478

    CAS  PubMed  Google Scholar 

  • Troster AI, Butters N, Salmon DP, Cullum CM, Jacobs D, Brandt J et al (1993) The diagnostic utility of savings scores: differentiating Alzheimer’s and Huntington’s diseases with the logical memory and visual reproduction tests. J Clin Exp Neuropsychol 15(5):773–788

    CAS  PubMed  Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic Press, New York, pp 381–402

    Google Scholar 

  • Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8(3):198–204

    CAS  PubMed  Google Scholar 

  • Van der Jeugd A, Goddyn H, Laeremans A, Arckens L, D’Hooge R, Verguts T (2009) Hippocampal involvement in the acquisition of relational associations, but not in the expression of a transitive inference task in mice. Behav Neurosci 123(1):109–114

    PubMed  Google Scholar 

  • van Enkhuizen J, Young JW (2016) Nicotine withdrawal and attentional deficit studies across species: conflation with attentional dysfunction in patients. In: Hall FS, Young JW, Der Avakian A (eds) Negative affective states in cognitive impairments in nicotine dependence. Elsevier, New York

    Google Scholar 

  • van Schouwenburg M, Aarts E, Cools R (2010) Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Curr Pharm Des 16(18):2026–2032

    PubMed  Google Scholar 

  • Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277(5324):376–380

    CAS  PubMed  Google Scholar 

  • Verleger R, Talamo S, Simmer J, Smigasiewicz K, Lencer R (2013) Neurophysiological sensitivity to attentional overload in patients with psychotic disorders. Clin Neurophysiol 124(5):881–892

    PubMed  Google Scholar 

  • Vetreno RP, Ramos RL, Anzalone S, Savage LM (2012) Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff syndrome. Brain Res 1436:178–192

    CAS  PubMed  Google Scholar 

  • Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428(6984):748–751

    CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    PubMed  PubMed Central  Google Scholar 

  • Warren CM, Hyman JM, Seamans JK, Holroyd CB (2015) Feedback-related negativity observed in rodent anterior cingulate cortex. J Physiol Paris 109(1–3):87–94

    PubMed  Google Scholar 

  • Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88

    PubMed  PubMed Central  Google Scholar 

  • Wechsler D, Psychological Corp (2004) WISC-IV: Wechsler Intelligence Scale for Children: technical and interpretive manual. Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D, Psychological C, PsychCorp (2008) WAIS-IV technical and interpretive manual. Pearson, San Antonio

    Google Scholar 

  • Wechsler D, Pearson Education I, PsychCorp (2009) WMS-IV technical and interpretive manual. Pearson, San Antonio

    Google Scholar 

  • Wickens CD, Kessel C (1980) Processing resource demands of failure detection in dynamic systems. J Exp Psychol Hum Percept Perform 6(3):564–577

    CAS  PubMed  Google Scholar 

  • Wickens CD, Kramer AF, Donchin E (1984) The event-related potential as an index of the processing demands of a complex target acquisition task. Ann N Y Acad Sci 425:295–299

    CAS  PubMed  Google Scholar 

  • Willott JF (2007) Factors affecting hearing in mice, rats, and other laboratory animals. J Am Assoc Lab Anim Sci 46(1):23–27

    CAS  PubMed  Google Scholar 

  • Wohlberg GW, Kornetsky C (1973) Sustained attention in remitted schizophrenics. Arch Gen Psychiatry 28(4):533–537

    CAS  PubMed  Google Scholar 

  • Wohr M, Engelhardt KA, Seffer D, Sungur AO, Schwarting RK (2017) Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socio-affective signals. Curr Top Behav Neurosci 30:67–89

    PubMed  Google Scholar 

  • Wolfe JM (1994) Visual search in continuous, naturalistic stimuli. Vis Res 34(9):1187–1195

    CAS  PubMed  Google Scholar 

  • Woodman GF, Luck SJ (1999) Electrophysiological measurement of rapid shifts of attention during visual search. Nature 400(6747):867–869

    CAS  PubMed  Google Scholar 

  • Woodman GF, Luck SJ (2003) Serial deployment of attention during visual search. J Exp Psychol Hum Percept Perform 29(1):121–138

    PubMed  Google Scholar 

  • World Health Organization (1993) ICD-10 classification of mental and behavioural disorders (the): diagnostic criteria for research. World Health Organization, Geneva

    Google Scholar 

  • Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2006) Exploring the short term visual store in schizophrenia using the attentional blink. J Psychiatr Res 40(7):599–605

    PubMed  Google Scholar 

  • Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111(4):931–959

    PubMed  Google Scholar 

  • Yonelinas AP, Hopfinger JB, Buonocore MH, Kroll NE, Baynes K (2001) Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: an fMRI study. Neuroreport 12(2):359–363

    CAS  PubMed  Google Scholar 

  • Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS et al (2004) Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29(5):891–900

    CAS  PubMed  Google Scholar 

  • Young JW, Light GA, Marston HM, Sharp R, Geyer MA (2009a) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS One 4(1):e4227

    PubMed  PubMed Central  Google Scholar 

  • Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009b) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122(2):150–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Meves JM, Geyer MA (2010) The alpha-7 nicotinic acetylcholine receptor agonist PNU 282987 does not improve vigilance in mice as assessed in the 5-choice continuous performance test: contrasting results with nicotine. J Psychopharmacol 24:A15–A15

    Google Scholar 

  • Young JW, Powell SB, Scott CN, Zhou X, Geyer MA (2011) The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: separating response inhibition from premature responding. Behav Brain Res 222(1):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Geyer MA, Rissling AJ, Sharp RF, Eyler LT, Asgaard GL et al (2013a) Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice. Transl Psychiatry 3:e324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Meves JM, Geyer MA (2013b) Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test. Behav Brain Res 240:119–133

    CAS  PubMed  Google Scholar 

  • Young J, Kamenski M, Higa K, Light G, Geyer M, Zhou X (2015) GlyT-1 inhibition attenuates the attentional but not learning or motivational deficits of the Sp4 hypomorphic mouse model relevant to psychiatric disorders. Neuropsychopharmacology 40(12):2715–2726. https://doi.org/10.1038/npp.2015.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Cope ZA, Romoli B, Schrurs E, Aniek J, van Enkhuizen J, Sharp RF, Dulcis D (2018) Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology. https://doi.org/10.1038/s41386-018-0031-y

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Mark Geyer for the wonderful example he has provided as a translational researcher in the field of psychiatric research. We also thank Ms. Mahalah Buell and Mr. Richard Sharp for their assistance throughout our work. We acknowledge the funding support from NIMH grant R01MH104344-03, UH2MG109168, T32MH018399-30 as well as by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center. The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared W. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacQueen, D.A., Young, J.W., Cope, Z.A. (2018). Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation. In: Pratt, J., Hall, J. (eds) Biomarkers in Psychiatry. Current Topics in Behavioral Neurosciences, vol 40. Springer, Cham. https://doi.org/10.1007/7854_2018_50

Download citation

Publish with us

Policies and ethics