Advertisement

pp 1-22 | Cite as

Immunological Processes in Schizophrenia Pathology: Potential Biomarkers?

  • Tina Notter
Chapter
Part of the Current Topics in Behavioral Neurosciences book series

Abstract

Accumulating evidence suggests that the pathophysiology or schizophrenia involves alterations in immune functions, both peripherally and centrally. Immunopsychiatric research has provided a number of candidate biomarkers that could aid estimating the risk of developing schizophrenia and/or predicting its clinical course or outcomes. This chapter summarizes the findings of immune dysfunctions along the clinical course of schizophrenia and discusses their potential value as predictive, trait or state biomarkers. Given the convergence of findings deriving from immunology, epidemiology, and genetics, the possibility of identifying immune-based biomarkers of schizophrenia seems realistic. Despite these promises, however, the field has realized that immune dysfunctions in schizophrenia may be as heterogeneous as the disorder itself. While challenging for psychiatric nosology, this heterogeneity offers the opportunity to define patient subgroups based on the presence or absence of distinct immune dysfunctions. This stratification may be clinically relevant for schizophrenic patients as it may help establishing personalized add-on therapies or preventive interventions with immunomodulating drugs.

Keywords

Biomarkers Cytokines Immune mediators Immune system Inflammation Schizophrenia 

References

  1. Abazyan B et al (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68:1172–1181.  https://doi.org/10.1016/j.biopsych.2010.09.022PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed A (2011) An overview of inflammation: mechanism and consequences. Front Biol 6:274–281Google Scholar
  3. Al-Amin MM, Nasir Uddin MM, Mahmud Reza H (2013) Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 11:144–151.  https://doi.org/10.9758/cpn.2013.11.3.144PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al-Diwani AAJ, Pollak TA, Irani SR, Lennox BR (2017) Psychosis: an autoimmune disease? Immunology 152:388–401.  https://doi.org/10.1111/imm.12795PubMedCrossRefGoogle Scholar
  5. Allswede DM, Buka SL, Yolken RH, Torrey EF, Cannon TD (2016) Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr Res 172:41–45.  https://doi.org/10.1016/j.schres.2016.02.022PubMedCrossRefGoogle Scholar
  6. Arakelyan A et al (2011) Functional characterization of the complement receptor type 1 and its circulating ligands in patients with schizophrenia. BMC Clin Pathol 11:10.  https://doi.org/10.1186/1472-6890-11-10PubMedPubMedCentralCrossRefGoogle Scholar
  7. Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163:927–929.  https://doi.org/10.1176/ajp.2006.163.5.927PubMedCrossRefGoogle Scholar
  8. Balu DT (2016) The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol 76:351–382.  https://doi.org/10.1016/bs.apha.2016.01.006PubMedPubMedCentralCrossRefGoogle Scholar
  9. Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB (2014) A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry 171:218–226.  https://doi.org/10.1176/appi.ajp.2013.13010086PubMedCrossRefGoogle Scholar
  10. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859PubMedCrossRefGoogle Scholar
  11. Birnbaum R, Jaffe AE, Chen Q, Shin JH, Kleinman JE, Hyde TM, Weinberger DR (2017) Investigating the neuroimmunogenic architecture of schizophrenia. Mol Psychiatry.  https://doi.org/10.1038/mp.2017.89
  12. Boerrigter D et al (2017) Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. J Neuroinflammation 14:188.  https://doi.org/10.1186/s12974-017-0962-yPubMedPubMedCentralCrossRefGoogle Scholar
  13. Boyajyan A, Khoyetsyan A, Chavushyan A (2010) Alternative complement pathway in schizophrenia. Neurochem Res 35:894–898.  https://doi.org/10.1007/s11064-010-0126-2PubMedCrossRefGoogle Scholar
  14. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58.  https://doi.org/10.1016/j.pneurobio.2010.09.003PubMedCrossRefGoogle Scholar
  15. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280.  https://doi.org/10.1176/appi.ajp.2009.09030361PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown AS, Cohen P, Harkavy-Friedman J, Babulas V, Malaspina D, Gorman JM, Susser ES (2001) A.E. Bennett Research Award. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry 49:473–486PubMedCrossRefGoogle Scholar
  17. Brown AS et al (2004a) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61:774–780.  https://doi.org/10.1001/archpsyc.61.8.774PubMedCrossRefGoogle Scholar
  18. Brown AS et al (2004b) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161:889–895.  https://doi.org/10.1176/appi.ajp.161.5.889ADSPubMedCrossRefGoogle Scholar
  19. Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162:767–773.  https://doi.org/10.1176/appi.ajp.162.4.767PubMedCrossRefGoogle Scholar
  20. Brown AS et al (2009) Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry 166:683–690.  https://doi.org/10.1176/appi.ajp.2008.08010089PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bruce LC, Peebles AMS (1903) Clinical and experimental observations on catatonia. J Ment Sci 49:614–628CrossRefGoogle Scholar
  22. Bruce LC, Peebles AMS (1904) Quantitative and qualitative leukocyte counts in various forms of mental disease. J Ment Sci 50:409–417CrossRefGoogle Scholar
  23. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001a) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58:1032–1037PubMedCrossRefGoogle Scholar
  24. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH (2001b) Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 15:411–420.  https://doi.org/10.1006/brbi.2001.0644PubMedCrossRefGoogle Scholar
  25. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81:391–401.  https://doi.org/10.1016/j.biopsych.2016.10.020PubMedCrossRefGoogle Scholar
  26. Chen ML, Tsai TC, Lin YY, Tsai YM, Wang LK, Lee MC, Tsai FM (2011) Antipsychotic drugs suppress the AKT/NF-kappaB pathway and regulate the differentiation of T-cell subsets. Immunol Lett 140:81–91.  https://doi.org/10.1016/j.imlet.2011.06.011PubMedCrossRefGoogle Scholar
  27. Chen ML, Wu S, Tsai TC, Wang LK, Tsai FM (2013) Regulation of macrophage immune responses by antipsychotic drugs. Immunopharmacol Immunotoxicol 35:573–580.  https://doi.org/10.3109/08923973.2013.828744PubMedCrossRefGoogle Scholar
  28. Choi GB et al (2016) The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science (New York, NY) 351:933–939.  https://doi.org/10.1126/science.aad0314ADSCrossRefGoogle Scholar
  29. Clarke MC, Tanskanen A, Huttunen M, Whittaker JC, Cannon M (2009) Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am J Psychiatry 166:1025–1030.  https://doi.org/10.1176/appi.ajp.2009.08010031PubMedCrossRefGoogle Scholar
  30. Consortium PG (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427.  https://doi.org/10.1038/nature13595ADSCrossRefGoogle Scholar
  31. Cotel MC et al (2015) Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol 25:2098–2107.  https://doi.org/10.1016/j.euroneuro.2015.08.004PubMedCrossRefGoogle Scholar
  32. Debost JP, Larsen JT, Munk-Olsen T, Mortensen PB, Meyer U, Petersen L (2017) Joint effects of exposure to prenatal infection and peripubertal psychological trauma in schizophrenia. Schizophr Bull 43:171–179.  https://doi.org/10.1093/schbul/sbw083PubMedCrossRefGoogle Scholar
  33. Dimitrov DH (2011) Correlation or coincidence between monocytosis and worsening of psychotic symptoms in veterans with schizophrenia? Schizophr Res 126:306–307.  https://doi.org/10.1016/j.schres.2010.06.003PubMedCrossRefGoogle Scholar
  34. Drexhage RC et al (2010) Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients. Int J Neuropsychopharmacol 13:1369–1381.  https://doi.org/10.1017/s1461145710000799PubMedCrossRefGoogle Scholar
  35. Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278PubMedCrossRefGoogle Scholar
  36. Eklund CM (2009) Proinflammatory cytokines in CRP baseline regulation. Adv Clin Chem 48:111–136PubMedCrossRefGoogle Scholar
  37. Esquirol JE (1845) Mental maladies, a treatise on insanity Philadelphia. Lea and Blanchard, Philadelphia, PAGoogle Scholar
  38. Estes ML, McAllister AK (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 16:469–486.  https://doi.org/10.1038/nrn3978PubMedPubMedCentralCrossRefGoogle Scholar
  39. Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science (New York, NY) 353:772–777.  https://doi.org/10.1126/science.aag3194ADSCrossRefGoogle Scholar
  40. Ezeoke A, Mellor A, Buckley P, Miller B (2013) A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr Res 150:245–251.  https://doi.org/10.1016/j.schres.2013.07.029PubMedCrossRefGoogle Scholar
  41. Fernandes BS et al (2016) C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry 21:554–564.  https://doi.org/10.1038/mp.2015.87PubMedCrossRefGoogle Scholar
  42. Fillman SG et al (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214.  https://doi.org/10.1038/mp.2012.110PubMedCrossRefGoogle Scholar
  43. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, Weickert CS (2016) Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry 21:1090–1098.  https://doi.org/10.1038/mp.2015.90PubMedCrossRefGoogle Scholar
  44. Gao L, Li Z, Chang S, Wang J (2014) Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS One 9:e90407.  https://doi.org/10.1371/journal.pone.0090407ADSPubMedPubMedCentralCrossRefGoogle Scholar
  45. Gilmore JH, Jarskog LF (1997) Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 24:365–367PubMedCrossRefGoogle Scholar
  46. Giovanoli S et al (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science (New York, NY) 339:1095–1099.  https://doi.org/10.1126/science.1228261ADSCrossRefGoogle Scholar
  47. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709.  https://doi.org/10.1038/mp.2016.3PubMedCrossRefGoogle Scholar
  48. Hamon, Paraire, Velluz (1952) Effect of R. P. 4560 on maniacal agitation. Ann Med Psychol (Paris) 110:331–335Google Scholar
  49. Henriksen MG, Nordgaard J, Jansson LB (2017) Genetics of schizophrenia: overview of methods, findings and limitations. Front Hum Neurosci 11:322.  https://doi.org/10.3389/fnhum.2017.00322PubMedPubMedCentralCrossRefGoogle Scholar
  50. Holmes SE et al (2016) In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [11C](R)-PK11195 positron emission tomography study. Mol Psychiatry 21:1672–1679.  https://doi.org/10.1038/mp.2016.180PubMedCrossRefGoogle Scholar
  51. Hudson ZD, Miller BJ (2016) Meta-analysis of cytokine and chemokine genes in schizophrenia. Clin Schizophr Relat Psychoses.  https://doi.org/10.3371/csrp.humi.070516
  52. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science (New York, NY) 327:291–295.  https://doi.org/10.1126/science.1183021ADSCrossRefGoogle Scholar
  53. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353.  https://doi.org/10.1038/ni.3123PubMedPubMedCentralCrossRefGoogle Scholar
  54. Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL (2013) A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol 27:337–342.  https://doi.org/10.1177/0269881112467089PubMedCrossRefGoogle Scholar
  55. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB (2014) Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 71:1121–1128.  https://doi.org/10.1001/jamapsychiatry.2014.1332PubMedPubMedCentralCrossRefGoogle Scholar
  56. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2:258–270.  https://doi.org/10.1016/s2215-0366(14)00122-9PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kirch DG (1993) Infection and autoimmunity as etiologic factors in schizophrenia: a review and reappraisal. Schizophr Bull 19:355–370PubMedCrossRefGoogle Scholar
  58. Kirkpatrick B, Miller BJ (2013) Inflammation and schizophrenia. Schizophr Bull 39:1174–1179.  https://doi.org/10.1093/schbul/sbt141PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kowalski J, Blada P, Kucia K, Madej A, Herman ZS (2001) Neuroleptics normalize increased release of interleukin-1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res 50:169–175PubMedCrossRefGoogle Scholar
  60. Kraepelin E (1890) Über Psychosen nach Influenza. Dtsch Med Wschr 16:209–212CrossRefGoogle Scholar
  61. Krause D et al (2012a) Monocytic HLA DR antigens in schizophrenic patients. Neurosci Res 72:87–93.  https://doi.org/10.1016/j.neures.2011.09.004PubMedCrossRefGoogle Scholar
  62. Krause DL et al (2012b) Intracellular monocytic cytokine levels in schizophrenia show an alteration of IL-6. Eur Arch Psychiatry Clin Neurosci 262:393–401.  https://doi.org/10.1007/s00406-012-0290-2PubMedCrossRefGoogle Scholar
  63. Kucharska-Mazur J et al (2014) Novel evidence for enhanced stem cell trafficking in antipsychotic-naive subjects during their first psychotic episode. J Psychiatr Res 49:18–24.  https://doi.org/10.1016/j.jpsychires.2013.10.016PubMedCrossRefGoogle Scholar
  64. Laan W, Grobbee DE, Selten JP, Heijnen CJ, Kahn RS, Burger H (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71:520–527.  https://doi.org/10.4088/JCP.09m05117yelPubMedCrossRefGoogle Scholar
  65. Labad J et al (2015) Stress biomarkers as predictors of transition to psychosis in at-risk mental states: roles for cortisol, prolactin and albumin. J Psychiatr Res 60:163–169.  https://doi.org/10.1016/j.jpsychires.2014.10.011PubMedCrossRefGoogle Scholar
  66. Lehmann-Facius H (1937) Uber die Liquordiagnose der Schizophrenien. Klin Wochenschr 16:1646–1648CrossRefGoogle Scholar
  67. Mayilyan KR, Weinberger DR, Sim RB (2008) The complement system in schizophrenia. Drug News Perspect 21:200–210.  https://doi.org/10.1358/dnp.2008.21.4.1213349PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192PubMedCrossRefGoogle Scholar
  69. Menninger KA (1919) Psychoses associated with influenza, I: general data: statistical analysis. JAMA 72:235–241CrossRefGoogle Scholar
  70. Menninger KA (1926) Influenza and schizophrenia: an analysis of post-influenzal “dementia praecox,” as of 1918, and five years later: further studies of the psychiatric aspects of influenza. Am J Psychiatry 5:469–529CrossRefGoogle Scholar
  71. Menninger KA (1928) The schizophrenia syndrome as a product of acute infectious disease. Arch Neurol Psychiatry 20:464–481CrossRefGoogle Scholar
  72. Meyer U (2014) Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75:307–315.  https://doi.org/10.1016/j.biopsych.2013.07.011PubMedCrossRefGoogle Scholar
  73. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J (2008) Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 13:208–221.  https://doi.org/10.1038/sj.mp.4002042PubMedCrossRefGoogle Scholar
  74. Meyer U, Feldon J, Yee BK (2009) A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 35:959–972.  https://doi.org/10.1093/schbul/sbn022PubMedCrossRefGoogle Scholar
  75. Meyer U, Schwarz MJ, Muller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132:96–110.  https://doi.org/10.1016/j.pharmthera.2011.06.003PubMedCrossRefGoogle Scholar
  76. Miller BJ, Goldsmith DR (2017) Towards an immunophenotype of schizophrenia: progress, potential mechanisms, and future directions. Neuropsychopharmacology 42:299–317.  https://doi.org/10.1038/npp.2016.211PubMedCrossRefGoogle Scholar
  77. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671.  https://doi.org/10.1016/j.biopsych.2011.04.013PubMedPubMedCentralCrossRefGoogle Scholar
  78. Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A (2013) Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 73:993–999.  https://doi.org/10.1016/j.biopsych.2012.09.007PubMedCrossRefGoogle Scholar
  79. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. Table of Contents.  https://doi.org/10.1128/cmr.00046-08PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mortensen PB, Norgaard-Pedersen B, Waltoft BL, Sorensen TL, Hougaard D, Yolken RH (2007) Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull 33:741–744.  https://doi.org/10.1093/schbul/sbm009PubMedPubMedCentralCrossRefGoogle Scholar
  81. Muller N et al (2002) Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 159:1029–1034.  https://doi.org/10.1176/appi.ajp.159.6.1029PubMedCrossRefGoogle Scholar
  82. Muller N et al (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254:14–22.  https://doi.org/10.1007/s00406-004-0478-1PubMedCrossRefGoogle Scholar
  83. Muller N et al (2012) Impaired monocyte activation in schizophrenia. Psychiatry Res 198:341–346.  https://doi.org/10.1016/j.psychres.2011.12.049PubMedCrossRefGoogle Scholar
  84. Nielsen PR, Benros ME, Mortensen PB (2014) Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish national registers. Schizophr Bull 40:1526–1532.  https://doi.org/10.1093/schbul/sbt200PubMedCrossRefGoogle Scholar
  85. Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC (1999) Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 156:1725–1729.  https://doi.org/10.1176/ajp.156.11.1725PubMedGoogle Scholar
  86. Nikkila HV, Muller K, Ahokas A, Rimon R, Andersson LC (2001) Increased frequency of activated lymphocytes in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res 49:99–105PubMedCrossRefGoogle Scholar
  87. Nitta M, Kishimoto T, Muller N, Weiser M, Davidson M, Kane JM, Correll CU (2013) Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 39:1230–1241.  https://doi.org/10.1093/schbul/sbt070PubMedPubMedCentralCrossRefGoogle Scholar
  88. Notter T, Meyer U (2017) Microglia and schizophrenia: where next? Mol Psychiatry 22:788–789.  https://doi.org/10.1038/mp.2017.67PubMedCrossRefGoogle Scholar
  89. Notter T et al (2018a) Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol Psychiatry.  https://doi.org/10.1038/mp.2016.248
  90. Notter T, Coughlin JM, Sawa A, Meyer U (2018b) Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 23(1):36–47PubMedCrossRefGoogle Scholar
  91. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789.  https://doi.org/10.1016/s0140-6736(00)04904-7PubMedCrossRefGoogle Scholar
  92. Pearlman DM, Najjar S (2014) Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder. Schizophr Res 157:249–258.  https://doi.org/10.1016/j.schres.2014.05.001PubMedCrossRefGoogle Scholar
  93. Perkins DO et al (2015) Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull 41:419–428.  https://doi.org/10.1093/schbul/sbu099PubMedCrossRefGoogle Scholar
  94. Presumey J, Bialas AR, Carroll MC (2017) Complement system in neural synapse elimination in development and disease. Adv Immunol 135:53–79.  https://doi.org/10.1016/bs.ai.2017.06.004PubMedCrossRefGoogle Scholar
  95. Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016) The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10:566.  https://doi.org/10.3389/fnhum.2016.00566PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rohleder N, Aringer M, Boentert M (2012) Role of interleukin-6 in stress, sleep, and fatigue. Ann N Y Acad Sci 1261:88–96.  https://doi.org/10.1111/j.1749-6632.2012.06634.xADSPubMedCrossRefGoogle Scholar
  97. Santos Soria L, Moura Gubert C, Cereser KM, Gama CS, Kapczinski F (2012) Increased serum levels of C3 and C4 in patients with schizophrenia compared to eutymic patients with bipolar disorder and healthy. Rev Bras Psiquiatr 34:119–120PubMedCrossRefGoogle Scholar
  98. Sekar A et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183.  https://doi.org/10.1038/nature16549PubMedPubMedCentralCrossRefGoogle Scholar
  99. Severance EG et al (2012) Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia. Neurobiol Dis 48:447–453.  https://doi.org/10.1016/j.nbd.2012.07.005PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shi J et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757.  https://doi.org/10.1038/nature08192ADSPubMedPubMedCentralGoogle Scholar
  101. Shibuya M, Watanabe Y, Nunokawa A, Egawa J, Kaneko N, Igeta H, Someya T (2014) Interleukin 1 beta gene and risk of schizophrenia: detailed case-control and family-based studies and an updated meta-analysis. Hum Psychopharmacol 29:31–37.  https://doi.org/10.1002/hup.2365PubMedCrossRefGoogle Scholar
  102. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702.  https://doi.org/10.1523/jneurosci.2178-07.2007PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS (2014) Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 40:181–191.  https://doi.org/10.1093/schbul/sbt139PubMedCrossRefGoogle Scholar
  104. Sorensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2009) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 35:631–637.  https://doi.org/10.1093/schbul/sbn121PubMedCrossRefGoogle Scholar
  105. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, Labad J (2014) Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology 41:23–32.  https://doi.org/10.1016/j.psyneuen.2013.12.005PubMedCrossRefGoogle Scholar
  106. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192.  https://doi.org/10.1001/archpsyc.60.12.1187PubMedCrossRefGoogle Scholar
  107. Suvisaari J, Haukka J, Tanskanen A, Hovi T, Lonnqvist J (1999) Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry 156:1100–1102.  https://doi.org/10.1176/ajp.156.7.1100PubMedGoogle Scholar
  108. Thion MS, Garel S (2017) On place and time: microglia in embryonic and perinatal brain development. Curr Opin Neurobiol 47:121–130.  https://doi.org/10.1016/j.conb.2017.10.004PubMedCrossRefGoogle Scholar
  109. Torrey EF, Peterson MR (1973) Slow and latent viruses in schizophrenia. Lancet 2:22–24PubMedCrossRefGoogle Scholar
  110. Torrey EF, Rawlings R, Waldman IN (1988) Schizophrenic births and viral diseases in two states. Schizophr Res 1:73–77PubMedCrossRefGoogle Scholar
  111. Trepanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21:1009–1026.  https://doi.org/10.1038/mp.2016.90PubMedPubMedCentralCrossRefGoogle Scholar
  112. Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155:101–108.  https://doi.org/10.1016/j.schres.2014.03.005PubMedCrossRefGoogle Scholar
  113. van Kesteren CF et al (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7:e1075.  https://doi.org/10.1038/tp.2017.4PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wagner-Jauregg J (1887) Über die Einwirkung fieberhafter Erkrankungen auf Psychosen. Jahrbücher für Psychiatrie 7:94–131Google Scholar
  115. Wagner-Jauregg J (1926) Fieberbehandlung bei Psychosen. Wien Med Wochenschr 76:79–82Google Scholar
  116. Wang AK, Miller BJ (2017) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull.  https://doi.org/10.1093/schbul/sbx035
  117. Warrington R, Watson W, Kim HL, Antonetti FR (2011) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 7(suppl 1):S1.  https://doi.org/10.1186/1710-1492-7-s1-s1PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xu M, He L (2010) Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophr Res 120:131–142.  https://doi.org/10.1016/j.schres.2010.02.1031PubMedCrossRefGoogle Scholar
  119. Zeni-Graiff M et al (2016) Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res 176:191–195.  https://doi.org/10.1016/j.schres.2016.06.031PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature  2018

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyUniversity of Zurich-VetsuisseZurichSwitzerland
  2. 2.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations