Skip to main content

Discriminative Stimulus Effects of Psychostimulants

  • Chapter
  • First Online:
The Behavioral Neuroscience of Drug Discrimination

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 39))

Abstract

Numerous drugs elicit locomotor stimulant effects at appropriate doses; however, we typically reserve the term psychostimulant to refer to drugs with affinity for monoamine reuptake transporters. This chapter comprises select experiments that have characterized the discriminative stimulus effects of psychostimulants using drug discrimination procedures. The substitution profiles of psychostimulants in laboratory rodents are generally consistent with those observed in human and nonhuman primate drug discrimination experiments. Notably, two major classes of psychostimulants can be distinguished as those that function as passive monoamine reuptake inhibitors (such as cocaine) and those that function as substrates for monoamine transporters and stimulate monoamine release (such as the amphetamines). Nevertheless, the discriminative stimulus effects of both classes of psychostimulant are quite similar, and drugs from different classes will substitute for one another. Most importantly, for both the cocaine-like and amphetamine-like psychostimulants, dopaminergic mechanisms most saliently determine discriminative stimulus effects, but these effects can be modulated by alterations in noradrenergic and serotonergic neurotransmission as well. Thusly, the drug discrimination assay is useful for characterizing the interoceptive effects of psychostimulants and determining the mechanisms that contribute to their subjective effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Glennon RA, Young R (2011) Methodological considerations. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. John Wiley & Sons, Inc., Hoboken, pp. 19–40

    Google Scholar 

  2. Porter JH, Prus AJ (2017) Introduction and overview of drug discrimination. In Porter JH, Prus AJ (eds) The behavioral neuroscience of drug discrimination

    Google Scholar 

  3. Quiñones-Jenab V, Perrotti LI, Fabian SJ, Chin J, Russo SJ, Jenab S (2001) Endocrinological basis of sex differences in cocaine-induced behavioral responses. Ann N Y Acad Sci 937:140–171

    Google Scholar 

  4. Segarra AC, Agosto-Rivera JL, Febo M, Lugo-Escobar N, Menéndez-Delmestre R, Puig-Ramos A, Torres-Diaz YM (2010) Estradiol: a key biological substrate mediating the response to cocaine in female rats. Horm Behav 58:33–43

    CAS  Google Scholar 

  5. Becker JB, Koob GF (2016) Sex differences in animal models: focus on addiction. Pharmacol Rev 68:242–263

    CAS  PubMed Central  Google Scholar 

  6. Lynch WJ (2006) Sex differences in vulnerability to drug self-administration. Exp Clin Psychopharmacol 14:34–41

    CAS  Google Scholar 

  7. Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661

    CAS  Google Scholar 

  8. Matecka D, Rothman RB, Radesca L, de Costa BR, Dersch CM, Partilla JS, Pert A, Glowa JR, Wojnicki HE, Rice KC (1996) Development of novel, potent, and selective dopamine reuptake inhibitors through alteration of the piperazine ring of 1-[2-(Diphenylmethoxy)ethyl]- and 1-[2-[Bis(4-flurophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909). J Med Chem 39:4704–4716

    CAS  Google Scholar 

  9. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    CAS  Google Scholar 

  10. Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand GR65630, to rat area postrema vagus nerve and the brain of several species. Eur J Pharmacol 159:157–164

    CAS  Google Scholar 

  11. Sharkey J, Ritz MC, Schenden JA, Hanson RC, Kuhar MJ (1988a) Cocaine inhibits muscarinic cholinergic receptors in heart and brain. J Pharmacol Exp Ther 246:1048–1052

    CAS  Google Scholar 

  12. Sharkey J, Glen KA, Wolfe S, Kuhar MJ (1988b) Cocaine binding at sigma receptors. Eur J Pharmacol 149:171–174

    CAS  Google Scholar 

  13. Colpaert FC, Niemegeers CJE, Janssen PAJ (1976) Cocaine cue in rats as it relates to subjective drug effects: a preliminary report. Eur J Pharmacol 40:195–199

    CAS  Google Scholar 

  14. McKenna ML, Ho BT (1980) The role of dopamine in the discriminative stimulus properties of cocaine. Neuropharmacology 19:297–303

    CAS  Google Scholar 

  15. Craft RM, Stratmann JA (1996) Discriminative stimulus effects of cocaine in female versus male rats. Drug Alcohol Depend 42:27–37

    CAS  Google Scholar 

  16. Anderson KG, van Haaren F (2000) Effects of SCH-23390 and raclopride on cocaine discrimination in male and female Wistar rats. Pharmacol Biochem Behav 65:671–675

    CAS  Google Scholar 

  17. Colpaert FC, Niemegeers CJE, Janssen PAJ (1978) Discriminative stimulus properties of cocaine and d-amphetamine, and antagonism by haloperidol: a comparative study. Neuropharmacology 17:937–942

    CAS  Google Scholar 

  18. D’Mello GD, Stolerman IP (1977) Comparison of the discriminative stimulus properties of cocaine in rats. Br J Pharmacol 61:415–422

    PubMed Central  Google Scholar 

  19. Cunningham KA, Callahan PM (1991) Monoamine reuptake inhibitors enhance the discriminative state induced by cocaine in the rat. Psychopharmacology 104:117–180

    Google Scholar 

  20. Kleven MS, Koek W (1998) Discriminative stimulus properties of cocaine: enhancement by monoamine reuptake blockers. J Pharmacol Exp Ther 284:1015–1025

    CAS  Google Scholar 

  21. Tella SR, Goldberg SR (2001) Subtle differences in the discriminative stimulus effects of cocaine and GBR-12909. Prog Neuro-Psycopharmacol Biol Psychiatry 25:639–656

    CAS  Google Scholar 

  22. Kleven MS, Koek W (1997) Discriminative stimulus properties of cocaine: enhancement by β-adrenergic receptor antagonists. Psychopharmacology 131:307–312

    CAS  Google Scholar 

  23. Li SM, Campbell BL, Katz JL (2006) Interactions of cocaine with dopamine uptake inhibitors or dopamine releasers in rats discriminating cocaine. J Pharmacol Exp Ther 317:1088–1096

    CAS  Google Scholar 

  24. Rush CR, Baker RW (2001) Behavioral pharmacological similarities between methylphenidate and cocaine in cocaine abusers. Exp Clin Psychopharmacol 9:59–73

    CAS  Google Scholar 

  25. Volkow ND, Wang G-J, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830

    CAS  Google Scholar 

  26. Callahan PM, Appel JB, Cunningham KA (1991) Dopamine D1 and D2 mediation of the discriminative stimulus properties of d-amphetamine and cocaine. Psychopharmacology 103:50–55

    CAS  Google Scholar 

  27. Acri JB, Carter SR, Alling K, Geter-Douglass B, Dijkstra D, Wikström H, Katz JL, Witkin JM (1995) Assessment of cocaine-like discriminative stimulus effects of dopamine D3 receptor ligands. Eur J Pharmacol 281:R7–R9

    CAS  Google Scholar 

  28. Garner KJ, Baker LE (1999) Analysis of D2 and D3 receptor-selective ligands in rats trained to discriminate cocaine from saline. Pharmacol, Biochem Behav 64:373–378

    CAS  Google Scholar 

  29. Callahan PM, de la Garza IIR, Cunningham KA (1997) Mediation of the discriminative stimulus properties of cocaine by mesocorticolimbic dopamine systems. Pharmacol Biochem Behav 57:601–607

    CAS  Google Scholar 

  30. Valente MJ, De Pinho PG, de Lourdes BM, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45

    CAS  Google Scholar 

  31. De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26

    Google Scholar 

  32. Gatch MB, Taylor CM, Forster MJ (2013) Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol 24(5–6):437–447

    CAS  PubMed Central  Google Scholar 

  33. Gannon BM, Williamson A, Suzuki M, Rice KC, Fantegrossi WE (2016) Stereoselective effects of abused “bath salt” constituent 3,4-methylenedioxypyrovalerone in mice: drug discrimination, locomotor activity, and thermoregulation. J Pharmacol Exp Ther 356(3):615–623

    CAS  PubMed Central  Google Scholar 

  34. Gannon BM, Fantegrossi WE (2016) Cocaine-like discriminative stimulus effects of mephedrone and naphyrone in mice. J Drug Alcohol Res 5:236009

    PubMed Central  Google Scholar 

  35. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal consitutent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562

    CAS  Google Scholar 

  36. Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC (2013) In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 38:563–573

    CAS  Google Scholar 

  37. Young R, Glennon RA (2009) S(−)propranolol as a discriminative stimulus and its comparison to the stimulus effects of cocaine in rats. Psychopharmacology 203:369–382

    CAS  Google Scholar 

  38. Schama KF, Howell LL, Byrd LD (1997) Serotonergic modulation of the discriminative-stimulus effects of cocaine in squirrel monkeys. Psychopharmacology 132:27–34

    CAS  Google Scholar 

  39. Filip M, Bubar MJ, Cunningham KA (2006) Contribution of serotonin (5-HT) 5-HT2 receptor subtypes to the discriminative stimulus effects of cocaine in rats. Psycopharmacology 183:482–489

    CAS  Google Scholar 

  40. Paris JM, Cunningham KA (1991) Serotonin 5-HT3 antagonists do not alter the discriminative stimulus properties of cocaine. Psychopharmacology 104:475–478

    CAS  Google Scholar 

  41. Walsh SL, Cunningham KA (1997) Serotonergic mechanisms involved in the discriminative stimulus, reinforcing and subjective effects of cocaine. Psychopharmacology 130:41–58

    CAS  Google Scholar 

  42. Tanda G, Katz JL (2007) Muscarinic preferential M1 receptor antagonists enhance the discriminative-stimulus effects of cocaine in rats. Pharmacol Biochem Behav 87:400–404

    CAS  PubMed Central  Google Scholar 

  43. Hiranita T, Soto PL, Tanda G, Katz JL (2011) Lack of cocaine-like discriminative-stimulus effects of σ-receptor agonists in rats. Behav Pharmacol 22:525–530

    CAS  PubMed Central  Google Scholar 

  44. Baumann MH, Ayestas Jr MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    CAS  Google Scholar 

  45. Oberlander R, Nichols DE (1988) Drug discrimination studies with MDMA and amphetamine. Psychopharmacology 95:71–76

    Google Scholar 

  46. Goodwin AK, Baker LE (2000) A three-choice discrimination procedure dissociates the discriminative stimulus effects of d-amphetamine and (±)-MDMA in rats. Exp Clin Psychopharmacol 8:415–423

    CAS  Google Scholar 

  47. Broadbear JH, Tunstall B, Beringer K (2011) Examining the role of oxytocin in the interoceptive effects of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) using a drug discrimination paradigm in the rat. Addict Biol 16:202–214

    CAS  Google Scholar 

  48. Johanson C-E, Kilbey M, Gatchalian K, Tancer M (2006) Discriminative stimulus effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans trained to discriminate among d-amphetamine, meta-chlorophenylpiperazine and placebo. Drug Alcohol Depend 81:27–36

    CAS  Google Scholar 

  49. Murnane KS, Murai N, Howell LL, Fantegrossi WE (2009) Discriminative stimulus effects of psychostimulants and hallucinogens in S(+)-3,4methylenedioxymethamphetamine (MDMA) and R(−)-MDMA trained mice. J Pharmacol Exp Ther 331:717–723

    CAS  PubMed Central  Google Scholar 

  50. Fantegrossi WE, Murai N, Mathúna BÓ, Pizarro N, de la Torre R (2009) Discriminative stimulus effects of 3,4-methylenedioxymethamphetamine and its enantiomers in mice: pharmacokinetic considerations. J Pharmacol Exp Ther 329:1006–1015

    CAS  PubMed Central  Google Scholar 

  51. de la Torre R, Farré M, Ortuño J, Mas M, Brenneisen R, Roset PN, Segura J, Camí J (2000) Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 49:104–1098

    PubMed Central  Google Scholar 

  52. Harper DN, Crowther A, Schenk S (2011) A comparison of MDMA and amphetamine in the drug discrimination paradigm. Open Addict J 4:22–23

    CAS  Google Scholar 

  53. Khorana N, Pullagurla MR, Young R, Glennon RA (2004) Comparison of the discriminative stimulus effects of 3,4-methylenedioxymethamphetamine (MDMA) and cocaine: asymmetric generalization. Drug Alcohol Depend 74:281–287

    CAS  Google Scholar 

  54. Harper DN, Langen A-L, Schenk S (2014) A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA. Pharmacol Biochem Behav 116:9–15

    CAS  Google Scholar 

  55. Pawlowski L, Siwanowicz J, Bigajska K, Przegaliński E (1985) Central antiserotonergic and antidopaminergic action of pirenperone, a putative 5-HT2 receptor antagonist. Pol J Pharmacol Pharm 37:179–196

    CAS  Google Scholar 

  56. Harvey EL, Baker LE (2016) Differential effects of 3,4-methylenedioxypyrovalerone (MDPV) and 4-methylmethcathinone (mephedrone) in rats trained to discriminate MDMA or a d-amphetamine + MDMA mixture. Psychopharmacology 233:673–680

    CAS  Google Scholar 

  57. Kuczenski R, Segal DS (1994) Neurochemistry of amphetamine. In: Cho AK, Segal DS (eds) Amphetamine and its analogs: psychopharmacology, toxicology, and abuse. Academic Press, Inc., San Diego, pp. 81–114

    Google Scholar 

  58. Smith FL, St. John C, Yang TFT, Lyness WH (1989) Role of specific dopamine receptor subtypes in amphetamine discrimination. Psycopharmacology 97:501–506

    CAS  Google Scholar 

  59. Vansickel AR, Lile JA, Stoops WW, Rush CR (2007) Similar discriminative-stimulus effects of D-amphetamine in women and men. Pharmacol Biochem Behav 87:289–296

    CAS  PubMed Central  Google Scholar 

  60. Kueh D, Baker LE (2007) Reinforcement schedule effects in rats trained to discriminate 3,4-methylenemethamphetamine (MDMA) or cocaine. Psychopharmacology 189:447–457

    CAS  Google Scholar 

  61. Brown JM, Hanson GR, Fleckenstein AE (2000) Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem 74:2221–2223

    CAS  Google Scholar 

  62. Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed Central  Google Scholar 

  63. Munzar P, Baumann MH, Shoaib M, Goldberg SR (1999) Effects of dopamine and serotonin-releasing agents on methamphetamine discrimination and self-administration in rats. Psychopharmacology 141:287–296

    CAS  Google Scholar 

  64. Lamb RJ, Henningfield JE (1994) Human d-amphetamine drug discrimination: methamphetamine and hyrodmorphone. J Exp Anal Behav 61:169–180

    CAS  PubMed Central  Google Scholar 

  65. Munzar P, Goldberg SR (1999) Noradrenergic modulation of the discriminative-stimulus effects of methamphetamine in rats. Psychopharmacology 143:293–301

    CAS  Google Scholar 

  66. Munzar P, Justinova Z, Kutkat SW, Goldberg SR (2002) Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine. Eur J Pharmacol 436:75–82

    CAS  Google Scholar 

  67. Bubar MJ, Pack KM, Frankel PS, Cunningham KA (2004) Effects of dopamine D1- and D2-like receptor antagonists on the hypermotive and discriminative stimulus effects of (+)-MDMA. Psychopharmacology 173:326–336

    CAS  Google Scholar 

  68. Schechter MD (1988) Serotonergic-dopaminergic mediation of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Biochem Behav 31:817–824

    CAS  Google Scholar 

  69. Glennon RA, Higgs R, Young R, Issa H (1992) Further studies on N-methyl-1(3,4-methylenedioxyphenyl)-2-aminopropane as a discriminative stimulus: antagonism by 5-hydroxytryptamine3 antagonists. Pharmacol Biochem Behav 43:1099–1106

    CAS  Google Scholar 

  70. Yarosh HL, Katz EB, Coop A, Fantegrossi WE (2007) MDMA-like behavioral effects of N-substituted piperazines in the mouse. Pharmacol Biochem Behav 88:18–27

    CAS  PubMed Central  Google Scholar 

  71. Schechter MD (1991) Effect of serotonin depletion by p-chlorophenylalanine upon discriminative behaviours. Gen Pharmacol 22:889–893

    CAS  Google Scholar 

  72. Baker LE, Makhay MM (1996) Effects of (+)-fenfluramine on 3,4-methylenedioxymethamphetamine (MDMA) discrimination in rats. Pharmacol Biochem Behav 53:455–461

    CAS  Google Scholar 

  73. Cole JC, Sumnall HR (2003) The pre-clinical behavioural pharmacology of 3,4-methylenedioxymethamphetamine (MDMA). Neurosci Biobehav Rev 27:199–217

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Fantegrossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berquist, M.D., Fantegrossi, W.E. (2017). Discriminative Stimulus Effects of Psychostimulants. In: Porter, J.H., Prus, A.J. (eds) The Behavioral Neuroscience of Drug Discrimination. Current Topics in Behavioral Neurosciences, vol 39. Springer, Cham. https://doi.org/10.1007/7854_2017_5

Download citation

Publish with us

Policies and ethics