Skip to main content

Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons

  • Chapter
Behavioral Neurobiology of Psychedelic Drugs

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 36))

Abstract

Recordings made from layer V (L5) pyramidal cells of the prefrontal cortex (PFC) and neocortex in rodent slice preparations have shown that serotonin (5-hydroxytryptamine, 5-HT) and serotonergic hallucinogens induce an increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in the apical dendritic field by activating 5-HT2A receptors. Serotonergic hallucinogens induce late EPSCs and increase recurrent network activity when subcortical or mid-cortical regions are stimulated at low frequencies (e.g., 0.1 Hz). A range of agonists or positive allosteric modulators (PAMs) for mostly Gi/o-coupled receptors, including metabotropic glutamate2 (mGlu2), adenosine A1, or μ-opioid receptors, suppress these effects of 5-HT2A receptor stimulation. Furthermore, a range of mostly Gq/11-coupled receptors (including orexin2 [OX2]; α1-adrenergic, and mGlu5 receptors) similarly induce glutamate (Glu) release onto L5 pyramidal cells. Evidence implicates a number of brain regions in mediating these effects of serotonergic hallucinogens and Gq/11-coupled receptors including the midline and intralaminar thalamic nuclei, claustrum, and neurons in deep PFC. These effects on 5-HT2A receptors and related GPCRs appear to play a major role in the behavioral effects of serotonergic hallucinogens, such as head twitches in rodents and higher order behaviors such as rodent lever pressing on the differential-reinforcement-of-low rate 72-s (DRL 72-s) schedule. This implies that the effects of 5-HT2A receptor activation on the activity of L5 pyramidal cells may be responsible for mediating a range of behaviors linked to limbic circuitry with connectivity between the PFC, striatum, thalamus, claustrum, striatum, amygdala, and the hippocampal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian GK (2009) Modeling “psychosis” in vitro by inducing disordered neuronal network activity in cortical brain slices. Psychopharmacology 206:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(3/4):589–599

    Article  CAS  PubMed  Google Scholar 

  • Ardayfio PA et al (2008) The 5-hydroxytryptamine2A receptor antagonist R-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl-4-piperidinemethanol (M100907) attenuates impulsivity after both drug-induced disruption (dizocilpine) and enhancement (antidepressant drugs) of differential-reinforcement-of-low-rate 72-s behavior in the rat. J Pharmacol Exp Ther 327:891–897

    Article  CAS  PubMed  Google Scholar 

  • Avesar D, Gulledge AT (2012) Selective serotonergic excitation of callosal projection neurons. Front Neural circuits 6

    Google Scholar 

  • Ballanger B et al (2010) Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch Neurol 67:416–421

    Article  PubMed  Google Scholar 

  • Barre A et al (2012) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci USA 113:E1382–E1391

    Article  CAS  Google Scholar 

  • Beique J-C et al (2007) Mechanism of the 5-hydroxytryptamine2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benneyworth MA et al (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 72:477–484

    CAS  PubMed  Google Scholar 

  • Benvenga MJ et al (2006) Attenuation of DOI-induced head twitches in mGluR2 KO mice. FASEB J 20:A246

    Google Scholar 

  • Berman RM et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Blin J et al (1993) Loss of brain 5-HT2 receptors in Alzheimer’s disease. Brain 116:497–510

    Article  PubMed  Google Scholar 

  • Bodkin JA et al (1995) Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 15:49–57

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573

    Article  CAS  PubMed  Google Scholar 

  • Burgess S et al (2001) Lithium for maintenance treatment of mood disorders. Cochrane Database Syst. Rev., (2):CD003013

    Google Scholar 

  • Canal CE, Morgan D (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4:556–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carli M et al (2006) Dissociable contribution of 5-HT1AA and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31:757–767

    Article  CAS  PubMed  Google Scholar 

  • Carlson ET, Simpson MM (1963) Opium as a tranquilizor. Am J Psychiatry 120:112–117

    Article  CAS  PubMed  Google Scholar 

  • Carpenter LL, Yasmin S, Price LH (2002) A double-blind placebo-controlled study of antidepressant augmentation with mirtazapine. Biol Psychiatry 51:183–188

    Article  CAS  PubMed  Google Scholar 

  • Chen, CPL-H et al (1998) Post-synaptic 5-HT1A and 5-HT2A receptors are increased in Parkinson’s disease neocortex. Ann NY Acad Sci 861: 288–289

    Google Scholar 

  • Ciliax BJ et al (2000) Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse 37:125–145

    Article  CAS  PubMed  Google Scholar 

  • Cross AJ et al (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Cross AJ et al (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7:3–7

    Article  CAS  PubMed  Google Scholar 

  • Cummings J et al (2014) Pimavanserin for patients with Parkinson’s disease psychosis: a randomized, placebo-controlled phase 3 trial. Lancet 383:533–540

    Article  CAS  PubMed  Google Scholar 

  • Czyrak A et al (1993) Pharmacological effects of zotipine and other antipsychotics on the central 5-HT2 receptors. Pharmacopsychiatry 26:53–58

    Article  CAS  PubMed  Google Scholar 

  • Delille HK et al (2012) Heterocomplex formation of 5-HT(2A)-mGlu(2) and its relevance for cellular signaling cascades. Neuropharmacology 62:2183–2190

    Article  CAS  Google Scholar 

  • Delille HK, Mezler M, Marek GJ (2013) The two faces of the pharmacological interaction of mGlu2 and 5-HT2A—relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 70:296–305

    Article  CAS  PubMed  Google Scholar 

  • Ding YQ et al (1996) Localization of the neuromedin K receptor (NK3) in the central nervous system of the rat. J Comp Neurol 364:290–310

    Article  CAS  PubMed  Google Scholar 

  • Doumazane E et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 25:66–77

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC, Furey ML (2010) Replication of scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn RT, Richards JB, Seiden LS (1993) Effects of salbutamol upon performance on an operant screen for antidepressant drugs. Psychopharmacology 113:1–10

    Article  CAS  PubMed  Google Scholar 

  • Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5-HT2A receptors are active under physiological conditions. Psychopharmacology 128:198–205

    Article  CAS  PubMed  Google Scholar 

  • Egashira N et al (2011) Role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. Pharmacol Biochem Behav 99:52–58

    Article  CAS  PubMed  Google Scholar 

  • Eison AS et al (1990) Nefazodone: preclinical pharmacology of a new antidepressant. Psychopharmacol Bull 26:311–315

    CAS  PubMed  Google Scholar 

  • Ellis JS et al (2014) Antidepressant treatment history as a predictor of response to scopolamine: clinical implications. J Affect Disord 162:39–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emrich HM, Voght P, Herz (1982) Possible antidepressive effects of opioids: action of buprenorphine. Ann NY Acad Sci 398:108–112

    Article  CAS  PubMed  Google Scholar 

  • Fell MJ et al (2011) N-(4-((2-trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes. J Pharmacol Exp Ther 336:165–177

    Article  CAS  PubMed  Google Scholar 

  • Ferreri M et al (2001) Benefits from mianserin augmentation of fluoxetine in patients with major depression non-responders to fluoxetine alone. Acta Psychiatr Scand 103:66–72

    Article  CAS  PubMed  Google Scholar 

  • Fitch TE, Benvenga MJ, Jesudason CD, Zink C, Vandergriff AB, Menezes MM, Schober DA, Rorick-Kehn LM, (2014) LSN2424100: a novel, potent orexin-2 receptor antagonist with selectivity over orexin-1 receptors and activity in an animal model predictive of antidepressant-like efficacy. Front Neurosci 8(Article 5): 1–11

    Google Scholar 

  • French Clozapine Parkinson Study Group (1999) Clozapine in drug-induced psychosis in Parkinson’s disease. Lancet 353: 2041–2042

    Google Scholar 

  • Fribourg M et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman E, Cooper TB, Dallob A (1983) Effects of chronic antidepressant treatment on serotonin receptor activity in mice. Eur J Pharmacol 89:69–76

    Article  CAS  PubMed  Google Scholar 

  • Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine. Arch Gen Psychiatry 63:1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W-J, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of reccurent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci U S A 98:295–300

    Article  CAS  PubMed  Google Scholar 

  • Gaynor CM, Handley SL (2001) Effects of nicotine on head-shakes and tryptophan metabolites. Psychopharmacology 153:327–333

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin GM, Green AR, Johnson P (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behavior following antidepressant treatment to mice. Br J Pharmacol 83:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouzoulis-Mayfrank E et al (2005) Psychological effects of (S)-ketamine and N, N-dimethyltryptamine: a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38:301–311

    Article  CAS  PubMed  Google Scholar 

  • Granon S et al (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacksell U et al (2014) On the discovery and development of pimavanserin: a novel drug candidate for Parkinson’s psychosis. Neurochem Res 39:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday G, Lees A, Stern M (2011) Milestones in Parkinson’s disease—Clinical and pathologic features. Mov Disord 26:1015–1021

    Article  PubMed  Google Scholar 

  • Handley SL, Singh L (1986) Neurotransmitters and shaking behaviour—more than a ‘gut-bath’ for the brain. Trends Pharmacol Sci 7: 324–328

    Article  CAS  Google Scholar 

  • Hasselbalch SG et al (2008) Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol Aging 29:1380–1388

    Article  CAS  Google Scholar 

  • Hayslett RL, Tizabi Y (2005) Effects of donepezil, nicotine and haloperidol on the central serotonergic system in mice: Implications for Tourette’s syndrome. Pharmacol Biochem Behav 81:879–886

    Article  CAS  PubMed  Google Scholar 

  • Higgins GA et al (2003) The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviors produced by NMDA receptor antagonism. Psychopharmacology 170:309–319

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse TM, Porter JH (2014) Ketamine, but not MK-801, produces antidepressant-like effects in rats responding on a differential-reinforcement-of-low-rate operant schedule. Behav Pharmacol 25:80–91

    Article  CAS  PubMed  Google Scholar 

  • Huang Q et al (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl Acad Sci U S A 89:11988–11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huot P et al (2010) Increased 5-HT2A receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Mov Disord 25:1399–1408

    Article  PubMed  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (1998) 5-HT2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogens in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karp JF et al (2014) Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry 75:e785–e793

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent JM et al (2016) Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression. Prog Neuro-Psychopharmacol Biol Psychiatry 67:66–73

    Article  CAS  Google Scholar 

  • Khajavi D et al (2012) Oral scopolamine augmentation in moderate to severe major depressive disorder: A randomized, double-blind, placebo-controlled study. J Clin Psychiatry 73:1428–1433

    Article  CAS  PubMed  Google Scholar 

  • Klodzinska A, et al (2002) Group II mGlu receptor agonists inhibit behavioral and electrophysiological effects of DOI in mice. Pharmacol. Biochem. Behav 73: 327–332

    Article  PubMed  Google Scholar 

  • Kolaj M et al (2014) Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 8:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koskinen T, Sirvio J (2001) Studies on the involvement of the dopaminergic system in the 5-HT2 agonist (DOI)-induced premature responding in a five-choice serial reaction time task. Br Res Bull 54:65–75

    Article  CAS  Google Scholar 

  • Koskinen T, Haapalinna A, Sirvio J (2003) Alpha-adrenoceptor-mediated modulation of 5-HT2 receptor agonist induced impulsive responding in a 5-choice serial reaction time task. Pharmacol Toxicol 92:214–225

    Article  CAS  PubMed  Google Scholar 

  • Kosten TR, Morgan C, Kosten TA (1990) Depressive symptoms during buprenorphine treatment of opioid abusers. J Substance Abuse Treatment 7:51–54

    Article  CAS  Google Scholar 

  • Lai MK et al (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology 179:673–677

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21: 9955–9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambe EK, Aghajanian GK (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 40:139–150

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Aghajanian GK (2007) Prefrontal cortical network activity: opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation. Neuroscience 145:900–910

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216–225

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Olausson P, Horst NK, Taylor JR, Aghajanian GK (2005) Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat. J Neurosci 25:5225–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambe EK, Liu RJ, Aghajanian GK (2007) Schizophrenia, hypocretin (orexin), and the thalamocortical activating system. Schizophr Bull 33:1284–1290

    Article  PubMed  PubMed Central  Google Scholar 

  • Langlois X et al (2001) Detailed distribution of neurokinin 3 receptors in the rat, guinea pig and gerbil brain: a comparative autoradiographic study. Neuropharmacology 40:242–253

    Article  CAS  PubMed  Google Scholar 

  • Lebrand C et al (1996) Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:991–1003

    Article  Google Scholar 

  • Lecrubier Y et al (1980) A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: a controlled study. Br J Psychiatry 136:354–358

    Article  CAS  PubMed  Google Scholar 

  • Li N et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 38:2268–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorke DE et al (2006) Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maes M et al (1999) Pindolol and mianserin augment the antidepressant activity of fluoxetine in hospitalized major depressed patients, including those with treatment resistance. J Clin Psychopharmacol 19:177–182

    Article  CAS  PubMed  Google Scholar 

  • Mansour A et al (1992) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46:959–971

    Article  CAS  PubMed  Google Scholar 

  • Marder SR (1999) Limitations of dopamine-D2 antagonists and the search for novel antipsychotic strategies. Neuropsychopharmacology 21(S6):S117–S121

    Article  CAS  Google Scholar 

  • Marek GJ (2003) Behavioral evidence for μ-opioid and 5-HT2A receptor interactions. Eur J Pharmacol 474:77–83

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ (2009) Activation of adenosine1 (A1) receptors suppresses head shakes induced by a serotonergic hallucinogen in rats. Neuropharmacology 56:1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek GJ (2012) Activation of adenosine1 receptors induces antidepressant-like, anti-impulsive effects on differential reinforcement of low-rate 72-s behavior in rats. J Pharmacol Exp Ther 341:564–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek GJ, Aghajanian GK (1998a) 5-HT-induced EPSCs in neocortical layer V pyramidal cells: suppression by µ-opiate receptor activation. Neuroscience 86:485–497

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1998b) The electrophysiology of prefrontal 5-HT systems: therapeutic implications for mood and psychosis. Biol Psychiat 44:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1999) 5-HT2A or α1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Seiden LS (1988) Effects of selective 5-hydroxytryptamine-2 and nonselective 5-hydroxytryptamine antagonists on the differential-reinforcement-of-low-rate 72-second schedule. J Pharmacol Exp Ther 244(2):650–658

    CAS  PubMed  Google Scholar 

  • Marek GJ, Zhang C (2008) Activation of metabotropic glutamate 5 (mGlu5) receptors induces spontaneous excitatory synaptic currents in layer V pyramidal cells of the rat prefrontal cortex. Neurosci Lett 442(3):239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek GJ, Li AA, Seiden LS (1989) Selective 5-hydroxytryptamine2 antagonists have antidepressant-like effects on differential-reinforcement-of-low-rate 72-second schedule. J Pharmacol Exp Ther 250(1):52–59

    CAS  PubMed  Google Scholar 

  • Marek GJ et al (2000) Physiological antagonism between 5-hydroxytryptamine2A and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292:76–87

    CAS  PubMed  Google Scholar 

  • Marek GJ et al (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105:379–392

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ et al (2003) Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 28:402–412

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ et al (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 30:2205–2215

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Day M, Hudzik TJ (2016) The utility of impulsive bias and altered decision making as predictors of drug efficacy and target selection: rethinking behavioral screening for antidepressant drugs. J Pharmacol Exp Ther 356:534–548

    Article  CAS  PubMed  Google Scholar 

  • Marner L et al (2011) The reduction of baseline serotonin 2A receptors in mild cognitive impairment is stable at two-year follow-up. J Alzheimers Dis 23:453–459

    Article  PubMed  Google Scholar 

  • Meltzer CC et al (1999) PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am J Psychiatry 156:1871–1878

    CAS  PubMed  Google Scholar 

  • Meltzer HY et al (2004) Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorders. Am J Psychiatry 161:975–984

    Article  PubMed  Google Scholar 

  • Meltzer HY et al (2010) Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of parkinson’s disease psychosis. Neuropsychopharmacology 35:881–892

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY et al (2012) Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2 mg/day, but does not enhance efficacy of haloperidol, 2 mg/day: comparison with reference dose risperidone, 6 mg/day. Schizophr Res 141:144–152

    Article  PubMed  Google Scholar 

  • Miner LAH et al (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116:107–117

    Article  CAS  PubMed  Google Scholar 

  • Mitrano DA et al (2012) Alpha-1 adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology 37:2161–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore NA et al (1992) The pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    CAS  PubMed  Google Scholar 

  • Moreno JL et al (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493:76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JL et al (2012) Identification of three residues essential for 5-hydroxtryptamine 2A-metabotropic glutamate 2 (5-HT2A-mGlu2) receptor heteromerizaiton and its psychoactive behavioral function. J Biol Chem 287:44301–44319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruza C et al (2014) Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment. Neuropharmacology 86:311–318

    Article  CAS  PubMed  Google Scholar 

  • Nacca A et al (1998) Brain-to-blood partition and in vivo inhibition of 5-hydroxytryptamine reuptake and quipazine-mediated behaviour of nefazodone and its main active metabolites in rodents. Br J Pharmacol 1998:1617–1623

    Article  Google Scholar 

  • Narboux-Neme N et al (2008) Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhbitors (SSRIs). Neuropharmacology 55:994–1005

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Papakostas GI (2009) Atypical antipsychotic augmentation in major depressive disorders: A meta-analysis of placebo-controlled randomized trials. Am J Psychiatry 166:980–991

    Article  PubMed  Google Scholar 

  • Neto FL et al (2000) Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat. Brain Res 854:93–105

    Article  Google Scholar 

  • Nicholas AP, Pieribone VA, Hokfelt T (1993) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Popik P, Drescher KU, van Gaalen M, Relo A-L, Mezler M, Marek G, Schoemaker H, Gross G, Bespalov A (2010) Effects of a positive allosteric modulatory of group II metabotropic glutamate receptors, LY487379, on cognitive flexibility and impulsive-like responding in rats. J Pharmacol Exp Ther 335:665–673

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell JM (1990) Behavioral effects of beta adrenergic agonists and antidepressant drugs after down-regulation of beta-2 adrenergic receptors by clenbuterol. J Pharmacol Exp Ther 254(1):147–157

    PubMed  Google Scholar 

  • O’Donnell JM (1993) Effects of the beta-2 adrenergic agonist zinterol on DRL behavior and locomotor activity. Psychopharmacology 113:89–94

    Article  PubMed  Google Scholar 

  • O’Donnell JM (1987) Effects of clenbuterol and prenalterol on performance during differential reinforcement of low response rate in the rat. J Pharmacol Exp Ther 241:68–75

    PubMed  Google Scholar 

  • O’Donnell JM (1988) Behavioral consequences of activation of beta adrenergic receptors by clenbuterol: evidence for mediation by the central nervous system. Br Res 21(3):491–497

    Google Scholar 

  • O’Donnell JM, Frith S, Wilkens J (1994) Involvement of beta-1 and beta-2 adrenergic receptors in the antidepressant-like effects of centrally administered isoproterenol. J Pharmacol Exp Ther 271:246–254

    PubMed  Google Scholar 

  • O’Donnell JM, Marek GJ, Seiden LS (2005) Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low-rate (DRL) operant schedule. Neurosci Biobehav Rev 29:785–798

    Article  PubMed  CAS  Google Scholar 

  • Palucha-Poniewierg A et al (2008) Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 55:517–524

    Article  CAS  Google Scholar 

  • Parkinson Study Group (1999) Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. N Eng J Med 340:757–763

    Article  Google Scholar 

  • Passetti F, Dalley JW, Robbins TW (2003) Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using rodenet five-choice reaction time test. Psychopharmacology 2003:136–145

    Article  CAS  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct central serotonin receptors with different physiological function. Science 212:827–829

    Article  CAS  PubMed  Google Scholar 

  • Perry EK et al (1984) Cortical serotonin-S2 receptor binding abnormalities in patients with Alzheimer’s disease: comparisons with Parkinson’s disease. Neurosci Lett 51:353–357

    Article  CAS  PubMed  Google Scholar 

  • Petrou M, Kotagel V, Bohnen NI (2012) An update on brain imaging in Parkinson’s dementia. Imaging Med 4:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preskorn SH et al (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28:631–637

    Article  CAS  PubMed  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of β1- and β2-adrenergic receptors in rat brain. Proc Natl Acad Sci USA 81:1585–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanathan S, Glatt SJ (2009) Serotonergic genes in psychosis of Alzheimer dementia: meta-analysis. Am J Geriatr Psychiatry 17:839–846

    Article  PubMed  Google Scholar 

  • Rasmussen NB et al (2016) 5-HT2A receptor binding in the frontal cortex of Parkinson’s disease patients and alpha-synuclein overexpressing mice: a post-mortem study. Parkinson’s Disease 2016

    Article  CAS  Google Scholar 

  • Rekling JC (2004) NK-3 receptor activation depolarizes and induces an after-depolarization in pyramidal neurons in gerbil cingulate cortex. Br Res Bull 63:85–90

    Article  CAS  Google Scholar 

  • Reynolds GP et al (1984) Reduced binding of [3H]ketanserin to cortical 5-HT2 receptors in senile dementia of the Alzheimer type. Neurosci Lett 44:47–51

    Article  CAS  PubMed  Google Scholar 

  • Rigby M, O’Donnell R, Rupniak NM (2005) Species differences in tachykinin receptor distribution: further evidence that the substance P (NK1) receptor predominates in human brain. J Comp Neurol 490:335–353

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Corrales, MO, Gilbert-Rahola J, Mico JA (2007) Role of atypical opiates in OCD. Experimental approach through the study of 5-HT(2A/C) receptor-mediated behavior. Psychopharmacology 190: 221–231

    Article  PubMed  CAS  Google Scholar 

  • Rojoz Z (2012) Effect of co-treatment with mirtazapine and risperidone in animal models of the positive symptoms of schizophrrenia in mice. Pharmacol Rep 64:1567–1572

    Article  Google Scholar 

  • Romano C et al (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355:455–469

    Article  CAS  PubMed  Google Scholar 

  • Rorick-Kehn LM et al (2007) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: In vitro characterization of agonist (-)-(1R,4S,5S,6S)-4-Amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 321:308–317

    Article  CAS  PubMed  Google Scholar 

  • Rotaru DC, Lewis DA, Gonzalez-Burgos G (2007) Dopamine D1 receptor activation regulates sodium-dependent EPSP amplication in rat prefrontal cortex pyramidal neurons. J Physiol 581(3):981–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saffroy M et al (2003) Autoradiographic distribution of tachykinin NK2 binding sites in the rat brain: comparison with NK1 and NK3 binding sites. Neuroscience 116:761–773

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Arnt J (2000) In-vivo assessment of 5-HT2A and 5-HT2C antagonistic properties of newer antipsychotics. Behav Pharmacol 11:291–298

    Article  CAS  PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2012) Expression of α1-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT2A receptors. Int J Neuropsychopharmacol 16:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Santhosh L et al (2009) Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer’s disease with [(18)F]deuteroaltanserin and PET. Psychiatry Res 173:212–217

    Article  CAS  PubMed  Google Scholar 

  • Schreiber R et al (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine(5-HT)2A receptors: Modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    CAS  PubMed  Google Scholar 

  • Shaw E, Woolley DW (1956) Some serotoninlike activities of lysergic acid diethylamide. Science 124:121–122

    Article  CAS  PubMed  Google Scholar 

  • Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372:395–414

    Article  CAS  PubMed  Google Scholar 

  • Simon P et al (1984) Beta-Receptor Stimulation in the Treatment of Depression. In: Usdin E (ed) Frontiers in Biochemical and Pharmacological Research in Depression, Raven PRess, New York, p 293

    Google Scholar 

  • Simonyi A et al (2005) Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging. Brain Res 1043(1–2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Slawinska A et al (2013) The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br J Pharmacol 169:1824–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stutzman GE, Marek GJ, Aghajanian GK (2001) Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex. Neuroscience 105:55–69

    Article  Google Scholar 

  • Talpos JC, Wilkinson LS, Robbins TW (2006) A comparison of multiple 5-HT receptors in two tasks measuring impulsivity. J. Psychopharmacol. 20:47–58

    Article  CAS  PubMed  Google Scholar 

  • Tizabi Y et al (2001) Nicotine attenuates DOI-induced head-twitch response in mice: Implications for Tourette Syndrome. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 25:1445–1457

    Article  CAS  Google Scholar 

  • Trillo L et al (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci Biobehav Rev 37:1363–1379

    Article  CAS  PubMed  Google Scholar 

  • Vinals X et al (2015) Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannobinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13:e1002194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voleti B, Navarria A, Liu RJ, Banasr M, Li M, Terwilliger R, Sanacora G, Eid T, Aghajanian G, Duman RS (2013) Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 74:742–749

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX et al (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:3897–3902

    Article  CAS  PubMed  Google Scholar 

  • Weisstaub NV et al (2006) Cortical 5-HT2A receptor signalling modulates anxiety-like behaviors in mice. Science 313:536–540

    Article  CAS  PubMed  Google Scholar 

  • Wettstein JG, Host M, Hitchcock JM (1999) Selectivity of action of typical and atypical anti-psychotic drugs as antagonists of the behavioral effects of 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 23:533–544

    Article  CAS  PubMed  Google Scholar 

  • Wieronska JM et al (2012) Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology 220:481–494

    Article  CAS  PubMed  Google Scholar 

  • Wieronska JM et al (2013) The reversal of cognitive, but not negative or positive symptoms of schizophrenia by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav Brain Res 256:298–304

    Article  CAS  PubMed  Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2Areceptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    CAS  PubMed  Google Scholar 

  • Wischhof L, Koch M (2012) Pretreatment with the mGlu2/3 receptor agonist LY379268 attenuates DOI-induced impulsive responding and regional c-Fos protein expression. Psychopharmacology 219:387–400

    Article  CAS  PubMed  Google Scholar 

  • Wischhof, L., K.J. Hollensteiner, and M. Koch, Impulsive behavior in rats induced by intracortical DOI infusions is antagonized by co-administration of an mGlu2/3 receptor agonist. Behav. Pharmacol., 2011. 22: p. 805–813

    Article  CAS  PubMed  Google Scholar 

  • Wright RA, Schoepp DD (2003) Effect of chronic exposure to mGlu2/3 receptor ligands (LY354740, LY379268 or LY341495) or antipsychotic agents clozapine or haloperidol on binding to mGlu2/3 and 5-HT2A receptors in rat prelimbic cortex. Neuroscience Meeting Planner, Society for Neuroscience

    Google Scholar 

  • Wright RA et al (2013) CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [3H]LY459477 autoradiography. Neuropharmacology 66:89–98

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Marek GJ (2007) Group III metabotropic glutamate receptor agonists selectively suppress excitatory synaptic currents in the rat prefrontal cortex induced by 5-hydroxytryptamine2A receptor stimulation. J Pharmacol Exp Ther 320:437–447

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Marek GJ (2008a) AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog Neuro-Psychopharmacol Biol Psychiatry 32:62–71

    Article  CAS  Google Scholar 

  • Zhang C, Marek GJ (2008b) AMPA receptors involvement in 5-hydroxytryptamine2A receptor-mediated prefrontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog. Neuropsychopharmacol. & Biol. Psychiatry 32:62–71

    Article  CAS  Google Scholar 

  • Zhang L, Renaud LP, Kolaj M (2009) Properties of T-Type Ca2+ channel-activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons. J Neurophysiol 101:2741–2750

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard J. Marek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marek, G.J. (2017). Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons. In: Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E. (eds) Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2017_480

Download citation

Publish with us

Policies and ethics