Skip to main content

Conditioned Taste Avoidance Drug Discrimination Procedure: Assessments and Applications

  • Chapter
  • First Online:
The Behavioral Neuroscience of Drug Discrimination

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 39))

Abstract

In the present chapter, we summarize much of the work on the taste avoidance drug discrimination procedure, presenting the logic for its initial introduction and the extension of the procedure in the investigation of the discriminative properties of various drugs. Results from these assessments parallel those from more traditional operant and maze designs in classifying and characterizing the discriminative properties of drug. At the same time, this design reveals a procedure that is sensitive in such assessments by indexing these stimulus properties more rapidly and at lower doses than in the more traditional procedures (in some cases for drugs heretofore resistant in their detection). Importantly, much remains to be learned about the taste avoidance procedure in that the nature of such learning remains unknown and the specific parameters under which it can be established and generalized and its neurochemical and neuroanatomical bases are largely unexplored. The application of drug discrimination learning to human drug abuse continues to be an important consideration for this specific design (as well as that of drug discrimination procedures in general), and recent parallels between drug use and food intake in terms of its regulation by interoceptive stimuli suggests a possible role of the loss of stimulus control in drug escalation and addiction (with possible therapeutic implications via the modulation of these interoceptive cues).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mastropaolo JP, Moskowitz KH, Dacanay RJ, Riley AL (1989) Conditioned taste aversions as a behavioral baseline for drug discrimination learning: an assessment with phencyclidine. Pharmacol Biochem Behav 32(1):1–8

    CAS  PubMed  Google Scholar 

  2. Jaeger TV, Mucha RF (1990) A taste aversion model of drug discrimination learning: training drug and condition influence rate of learning, sensitivity and drug specificity. Psychopharmacology (Berl) 100(2):145–150

    CAS  PubMed  Google Scholar 

  3. Lucki I (1988) Rapid discrimination of the stimulus properties of 5-hydroxytryptamine agonists using conditioned taste aversion. J Pharmacol Exp Ther 247(3):1120–1127

    CAS  PubMed  Google Scholar 

  4. Martin GM, Gans M, van der Kooy D (1990) Discriminative properties of morphine that modulate associations between tastes and lithium chloride. J Exp Psychol Anim Behav Process 16(1):56

    CAS  PubMed  Google Scholar 

  5. Garcia J, Kimeldorf DJ, Koelling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157–158

    CAS  PubMed  Google Scholar 

  6. Garcia J, Kimeldorf DJ (1957) Temporal relationship within the conditioning of a saccharine aversion through radiation exposure. J Comp Physiol Psychol 50(2):180–183

    CAS  PubMed  Google Scholar 

  7. Garcia J, Koelling RA (1966) Relation of cue to consequence in avoidance learning. Psychon Sci 4(1):123–124

    Google Scholar 

  8. Garcia J, Ervin F (1968) Gustatory-visceral and telereceptor-cutaneous conditioning: adaptation in internal and external milieus. Commun Behav Biol 1(5):389–415

    Google Scholar 

  9. Rozin P, Kalat JW (1971) Specific hungers and poison avoidance as adaptive specializations of learning. Psychol Rev 78(6):459–486

    CAS  PubMed  Google Scholar 

  10. Freeman KB, Riley AL (2009) The origins of conditioned taste aversion learning: a historical analysis. In: Reilly S, Schachtman TR (eds) Conditioned taste aversion: behavioral and neural processes. Oxford University Press, Oxford, pp 9–33

    Google Scholar 

  11. Reilly S, Schachtman T (eds) (2009) Conditioned taste aversion: behavioral and neural processes. Oxford University Press, Oxford

    Google Scholar 

  12. Davidson TL, Riley AL (2015) Taste, sickness, and learning. Am Sci 103(3):204–211

    Google Scholar 

  13. Brady KT, Balster RL (1981) Discriminative stimulus properties of phencyclidine and five analogues in the squirrel monkey. Pharmacol Biochem Behav 14(2):213–218

    CAS  PubMed  Google Scholar 

  14. Poling A, White F, Appel J (1979) Discriminative stimulus properties of phencyclidine. Neuropharmacology 18(5):459–463

    CAS  PubMed  Google Scholar 

  15. Lucki I, Marcoccia JM (1991) Discriminated taste aversion with 5-HT1A agonist measured using saccharin preference. Behav Pharmacol 2:335–44

    PubMed  Google Scholar 

  16. Miranda F, Hong E, Velázquez-Martınez D (2001) Discriminative stimulus properties of indorenate in a conditioned taste aversion paradigm. Pharmacol Biochem Behav 68(3):427–433

    Google Scholar 

  17. Miranda F, Orozco G, Velazquez-Martinez D (2002) Full substitution of the discriminative cue of a 5-HT1A/1B/2C agonist with the combined administration of a 5-HT1B/2C and a 5-HT1A agonist. Behav Pharmacol 13(4):303–311

    CAS  PubMed  Google Scholar 

  18. Miranda F, Hong E, López CM, Velázquez MD (1998) Modulation of the discriminative stimulus properties of indorenate by 5-HT receptors. Proc West Pharmacol Soc 41:59–60

    Google Scholar 

  19. Miranda F, Hong E, Sánchez H, Velázquez-Martınez D (2003) Further evidence that the discriminative stimulus properties of indorenate are mediated by 5-HT 1A/1B/2C receptors. Pharmacol Biochem Behav 74(2):371–380

    Google Scholar 

  20. Martin GM, Bechara A, van der Kooy D (1991) The perception of emotion: parallel neural processing of the affective and discriminative properties of opiates. Psychobiology 19(2):147–152

    Google Scholar 

  21. Järbe T, Lamb R (1999) Effects of lithium dose (UCS) on the acquisition and extinction of a discriminated morphine aversion: tests with morphine and [DELTA] 9-THC. Behav Pharmacol 10(4):349–358

    PubMed  Google Scholar 

  22. Skinner DM (2000) Modulation of taste aversions by a pentobarbital drug state: an assessment of its transfer properties. Learn Motiv 31(4):381–401

    Google Scholar 

  23. Skinner DM, Martin GM, Pridgar A, Van Der Kooy D (1994) Conditional control of fluid consumption in an occasion setting paradigm is independent of Pavlovian associations. Learn Motiv 25(4):368–400

    Google Scholar 

  24. Bienkowski P, Piasecki J, Koros E, Stefanski R, Kostowskia W (1998) Studies on the role of nicotinic acetylcholine receptors in the discriminative and aversive stimulus properties of ethanol in the rat. Eur Neuropsychopharmacol 8(2):79–87

    CAS  PubMed  Google Scholar 

  25. De Boer T (1996) The pharmacologic profile of mirtazepine. J Clin Psychiatry 57(Suppl 4):19–25

    Google Scholar 

  26. De Beun R, Lohmann A, Schneider R, De Vry J (1996) Ethanol intake-reducing effects of ipsapirone in rats are not due to simple stimulus substitution. Pharmacol Biochem Behav 53(4):891–898

    PubMed  Google Scholar 

  27. Olivier B, Gommans J, Van der Gugten J, Bouwknecht J, Herremans A, Patty T, Hijzen T (1999) Stimulus properties of the selective 5-HT reuptake inhibitor fluvoxamine in conditioned taste aversion procedures. Pharmacol Biochem Behav 64(2):213–220

    CAS  PubMed  Google Scholar 

  28. Serafine KM, Riley AL (2012) Cocaine-induced conditioned taste aversions: role of monoamine reuptake inhibition. In: Hall FS (ed) Serotonin: biosynthesis, regulation and health implications. NOVA Science Publishers, Hauppauge, pp 257–291

    Google Scholar 

  29. Melton PM, Riley AL (1994) Receptor mediation of the stimulus properties of cholecystokinin. Pharmacol Biochem Behav 48(1):275–279

    CAS  PubMed  Google Scholar 

  30. Jaeger TV, van der Kooy D (1993) Morphine acts in the parabrachial nucleus, a pontine viscerosensory relay, to produce discriminative stimulus effects. Psychopharmacology (Berl) 110(1–2):76–84

    CAS  PubMed  Google Scholar 

  31. Jaeger TV, van der Kooy D (1996) Separate neural substrates mediate the motivating and discriminative properties of morphine. Behav Neurosci 110(1):181–201

    CAS  PubMed  Google Scholar 

  32. Redila VA, Aliatas E, Smith BR, Amit Z (2002) Effects of ethanol on an acetaldehyde drug discrimination with a conditioned taste aversion procedure. Alcohol 28(2):103–109

    CAS  Google Scholar 

  33. Glowa JR, Jeffreys RD, Riley AL (1991) Drug discrimination using a conditioned taste-aversions paradigm in rhesus monkeys. J Exp Anal Behav 56(2):303–312

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Herrera F, Martinez DV (1997) Discriminative stimulus properties of amphetamine in a conditioned taste aversion paradigm. Behav Pharmacol 8(5):458–464

    CAS  PubMed  Google Scholar 

  35. Miranda F, Sandoval-Sánchez A, Cedillo LN, Jiménez JC, Millán-Mejía P, Velázquez-Martínez DN (2007) Modulatory role of 5-HT1B receptors in the discriminative signal of amphetamine in the conditioned taste aversion paradigm. Pharmacol Rep 59(5):517–524

    CAS  PubMed  Google Scholar 

  36. Pournaghash S, Riley AL (1993) Buprenorphine as a stimulus in drug discrimination learning: an assessment of mu and kappa receptor activity. Pharmacol Biochem Behav 46(3):593–604

    CAS  PubMed  Google Scholar 

  37. Smurthwaite ST, Riley AL (1994) Nalorphine as a stimulus in drug discrimination learning: assessment of the role of μ- and κ-receptor subtypes. Pharmacol Biochem Behav 48(3):635–642

    CAS  PubMed  Google Scholar 

  38. Awasaki Y, Nojima H, Nishida N (2011) Application of the conditioned taste aversion paradigm to assess discriminative stimulus properties of psychostimulants in rats. Drug Alcohol Depend 118(2):288–294

    CAS  PubMed  Google Scholar 

  39. Fox MA, Levine ES, Riley AL (2001) The inability of CCK to block (or CCK antagonists to substitute for) the stimulus effects of chlordiazepoxide. Pharmacol Biochem Behav 69(1):77–84

    CAS  PubMed  Google Scholar 

  40. van Hest A, Hijzen T, Slangen J, Olivier B (1992) Assessment of the stimulus properties of anxiolytic drugs by means of the conditioned taste aversion procedure. Pharmacol Biochem Behav 42(3):487–495

    PubMed  Google Scholar 

  41. Woudenberg F, Hijzen TH (1991) Discriminated taste aversion with chlordiazepoxide. Pharmacol Biochem Behav 39(4):859–863

    CAS  PubMed  Google Scholar 

  42. Miranda F, Jiménez JC, Cedillo LN, Sandoval-Sánchez A, Millán-Mejía P, Sánchez-Castillo H, Velázquez-Martínez DN (2009) The GABA-B antagonist 2-hydroxysaclofen reverses the effects of baclofen on the discriminative stimulus effects of D-amphetamine in the conditioned taste aversion procedure. Pharmacol Biochem Behav 93(1):25–30

    CAS  PubMed  Google Scholar 

  43. Revusky S, Coombes S, Pohl RW (1982) Drug states as discriminative stimuli in a flavor-aversion learning experiment. J Comp Physiol Psychol 96(2):200–211

    CAS  PubMed  Google Scholar 

  44. Smurthwaite ST, Riley AL (1992) Diprenorphine as a stimulus in drug discrimination learning. Pharmacol Biochem Behav 43(3):839–846

    CAS  PubMed  Google Scholar 

  45. Quertemont E (2003) Discriminative stimulus effects of ethanol with a conditioned taste aversion procedure: lack of acetaldehyde substitution. Behav Pharmacol 14(4):343–350

    CAS  PubMed  Google Scholar 

  46. Redila VA, Smith BR, Amit Z (2000) The effects of aminotriazole and acetaldehyde on an ethanol drug discrimination with a conditioned taste aversion procedure. Alcohol 21(3):279–285

    CAS  PubMed  Google Scholar 

  47. Grabus SD, Smurthwaite ST, Riley AL (1999) Nalorphine’s ability to substitute for morphine in a drug discrimination procedure is a function of training dose. Pharmacol Biochem Behav 63(3):481–488

    CAS  PubMed  Google Scholar 

  48. Järbe T, Lamb R (1995) Discriminated conditioned taste aversion for studying multi-element stimulus control. Behav Pharmacol 6(2):149–155

    Google Scholar 

  49. Järbe T, Lamb R (1999) Discriminated taste aversion and context: a progress report. Pharmacol Biochem Behav 64(2):403–407

    PubMed  Google Scholar 

  50. Skinner DM, Martin GM (1992) Conditioned taste aversions support drug discrimination learning at low dosages of morphine. Behav Neural Biol 58(3):236–241

    CAS  PubMed  Google Scholar 

  51. Skinner DM, Martin GM, Harley C, Kolb B, Pridgar A, Bechara A, van der Kooy D (1994) Acquisition of conditional discriminations in hippocampal lesioned and decorticated rats: evidence for learning that is separate from both simple classical conditioning and configural learning. Behav Neurosci 108(5):911–926

    CAS  PubMed  Google Scholar 

  52. Skinner DM, Martin GM, Howe RD, Pridgar A, van der Kooy D (1995) Drug discrimination learning using a taste aversion paradigm: an assessment of the role of safety cues. Learn Motiv 26(4):343–369

    Google Scholar 

  53. Stevenson GW, Pournaghash S, Riley AL (1992) Antagonism of drug discrimination learning within the conditioned taste aversion procedure. Pharmacol Biochem Behav 41(1):245–249

    CAS  PubMed  Google Scholar 

  54. Stevenson GW, Cañadas F, Zhang X, Rice KC, Riley AL (2000) Morphine discriminative control is mediated by the mu opioid receptor: assessment of delta opioid substitution and antagonism. Pharmacol Biochem Behav 66(4):851–856

    CAS  PubMed  Google Scholar 

  55. Davis CM, Stevenson GW, Cañadas F, Ullrich T, Rice KC, Riley AL (2009) Discriminative stimulus properties of naloxone in Long–Evans rats: assessment with the conditioned taste aversion baseline of drug discrimination learning. Psychopharmacology (Berl) 203(2):421–429

    CAS  PubMed  Google Scholar 

  56. Smurthwaite ST, Kautz MA, Geter B, Riley AL (1992) Naloxone as a stimulus in drug discrimination learning: generalization to other opiate antagonists. Pharmacol Biochem Behav 41(1):43–47

    CAS  PubMed  Google Scholar 

  57. Järbe TU, Harris MY, Li C, Liu Q, Makriyannis A (2004) Discriminative stimulus effects in rats of SR-141716 (rimonabant), a cannabinoid CB1 receptor antagonist. Psychopharmacology (Berl) 177(1–2):35–45

    PubMed  Google Scholar 

  58. Järbe TU, Li C, Vadivel SK, Makriyannis A (2008) Discriminative stimulus effects of the cannabinoid CB1 receptor antagonist rimonabant in rats. Psychopharmacology (Berl) 198(4):467–478

    PubMed  Google Scholar 

  59. Melton PM, Riley AL (1993) An assessment of the interaction between cholecystokinin and the opiates within a drug discrimination procedure. Pharmacol Biochem Behav 46(1):237–242

    CAS  PubMed  Google Scholar 

  60. Melton PM, Kopman JA, Riley AL (1993) Cholecystokinin as a stimulus in drug discrimination learning. Pharmacol Biochem Behav 44(2):249–252

    CAS  PubMed  Google Scholar 

  61. Riley AL, Melton PM (1997) Effects of μ- and δ-opioid–receptor antagonists on the stimulus properties of cholecystokinin. Pharmacol Biochem Behav 57(1):57–62

    CAS  PubMed  Google Scholar 

  62. De Beun R, Heinsbroek R, Slangen J, van de Poll N (1991) Discriminative stimulus properties of estradiol in male and female rats revealed by a taste-aversion procedure. Behav Pharmacol 2(6):439–445

    Google Scholar 

  63. Kautz MA, Geter B, McBride SA, Mastropaolo JP, Riley AL (1989) Naloxone as a stimulus for drug discrimination learning. Drug Dev Res 16(2–4):317–326

    CAS  Google Scholar 

  64. De Beun R, Jansen E, Slangen JL, van de Poll NE (1992) Testosterone as appetitive and discriminative stimulus in rats: sex- and dose-dependent effects. Physiol Behav 52(4):629–634

    Google Scholar 

  65. Weissman A (1978) Discriminability of naloxone in rats depends on concomitant morphine treatment. Psychopharmacology (Berl) 58(2):2–12

    Google Scholar 

  66. Colpaert FC, Niemegeers CJ, Janssen PA (1976) On the ability of narcotic antagonists to produce the narcotic cue. J Pharmacol Exp Ther 197(1):180–187

    CAS  PubMed  Google Scholar 

  67. Lal H, Miksic S, McCarten M (1978) A comparison of discriminative stimuli produced by naloxone, cyclazocine and morphine in the rat. In: Colpaert FC, Rosecrans JA (eds) Stimulus properties of drugs: ten years of progress. Elsevier, Amsterdam, pp 177–180

    Google Scholar 

  68. Overton DA, Batta SK (1977) Relationship between abuse liability of drugs and their degree of discriminability in the rat. In: Thompson T, Unna KR (eds) Predicting dependence liability of stimulant and depressant drugs. University Park Press, Baltimore, pp 125–135

    Google Scholar 

  69. Overton DA (1982) Comparison of the degree of discriminability of various drugs using the T-maze drug discrimination paradigm. Psychopharmacology (Berl) 76(4):385–395

    CAS  PubMed  Google Scholar 

  70. Carter RB, Leander JD (1982) Discriminative stimulus properties of naloxone. Psychopharmacology (Berl) 77(4):305–308

    CAS  PubMed  Google Scholar 

  71. Riley AL, Pournaghash S (1995) The effects of chronic morphine on the generalization of buprenorphine stimulus control: an assessment of kappa antagonist activity. Pharmacol Biochem Behav 52(4):779–787

    CAS  PubMed  Google Scholar 

  72. Sobel B-F, Wetherington C, Riley A (1995) The contribution of within-session averaging of drug- and vehicle-appropriate responding to the graded dose–response function in drug discrimination learning. Behav Pharmacol 6(4):348–358

    CAS  PubMed  Google Scholar 

  73. Rowan GA, Lucki I (1992) Discriminative stimulus properties of the benzodiazepine receptor antagonist flumazenil. Psychopharmacology (Berl) 107(1):103–112

    CAS  PubMed  Google Scholar 

  74. Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1(3):1194–1206

    CAS  PubMed  Google Scholar 

  75. Barrett RJ, Caul WF, Huffman EM, Smith RL (1994) Drug discrimination is a continuous rather than a quantal process following training on a VI-TO schedule of reinforcement. Psychopharmacology (Berl) 113(3–4):289–296

    CAS  PubMed  Google Scholar 

  76. Barrett RJ, Caul WF, Huffman EM, Smith RL (1994) Reply to comments by Overton, Emmett-Oglesby and Gauvin and Holloway. Psychopharmacology (Berl) 113(3):302–303

    Google Scholar 

  77. Emmett-Oglesby M (1994) Commentary on “Drug discrimination is a continuous rather than a quantal process following training on a VI-TO schedule of reinforcement” by Barrett et al. Psychopharmacology (Berl) 113(3):300–301

    Google Scholar 

  78. Mathis D, Emmett-Oglesby M (1990) Quantal vs. graded generalization in drug discrimination: measuring a graded response. J Neurosci Methods 31(1):23–33

    CAS  PubMed  Google Scholar 

  79. Overton DA (1994) Disadvantages of quantal drug discrimination procedures. Psychopharmacology (Berl) 113(3):298–299

    Google Scholar 

  80. Riley A, Kautz M, Geter B, Pournaghash S, Melton P, Ferrari C (1991) A demonstration of the graded nature of the generalization function of drug discrimination learning within the conditioned taste aversion procedure. Behav Pharmacol 2(4–5):323–334

    PubMed  Google Scholar 

  81. Gorzalka BB, Wilkie DM, Hanson LA (1995) Discrimination of ovarian steroids by rats. Physiol Behav 58(5):1003–1011

    CAS  PubMed  Google Scholar 

  82. van Hest A, Slangen JL, Olivier B (1991) Is the conditioned taste aversion procedure a useful tool in drug discrimination research? In: Oliver B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhauser, Basel, pp 399–405

    Google Scholar 

  83. Lucki I, Singh A, Kreiss DS (1994) Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 18(1):85–95

    CAS  PubMed  Google Scholar 

  84. Järbe T (1989) Discrimination learning with drug stimuli: methods and applications. In: Boulten AA, Baker GB, Greenshaw AJ (eds) Neuromethods, vol 13. Psychopharmacology. Humana Press, Clifton, pp 513–563

    Google Scholar 

  85. Slangen J (1991) Drug discrimination and animal models. In: Oliver B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhauser, Basel, pp 359–373

    Google Scholar 

  86. Emmett-Oglesby M, Mathis D, Moon R, Lal H (1990) Animal models of drug withdrawal symptoms. Psychopharmacology (Berl) 101(3):292–309

    CAS  PubMed  Google Scholar 

  87. McMahon LR (2015) The rise (and fall?) of drug discrimination research. Drug Alcohol Depend 151:284–288

    PubMed  PubMed Central  Google Scholar 

  88. Panlilio LV, Thorndike EB, Schindler CW (2008) A stimulus-control account of regulated drug intake in rats. Psychopharmacology (Berl) 196(3):441–450

    CAS  PubMed  Google Scholar 

  89. Panlilio LV, Thorndike EB, Schindler CW (2009) A stimulus-control account of dysregulated drug intake. Pharmacol Biochem Behav 92(3):439–447

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Suto N, Wise RA (2011) Satiating effects of cocaine are controlled by dopamine actions in the nucleus accumbens core. J Neurosci 31(49):17917–17922

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsibulsky VL, Norman AB (1999) Satiety threshold: a quantitative model of maintained cocaine self-administration. Brain Res 839(1):85–93

    CAS  PubMed  Google Scholar 

  92. Tsibulsky VL, Norman AB (2001) Satiety threshold during maintained cocaine self-administration in outbred mice. Neuroreport 12(2):325–328

    CAS  PubMed  Google Scholar 

  93. Davidson T, Hargrave S, Swithers S, Sample C, Fu X, Kinzig K, Zheng W (2013) Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience 253C:110–122

    Google Scholar 

  94. Davidson TL (1987) Learning about deprivation intensity stimuli. Behav Neurosci 101(2):198–208

    CAS  PubMed  Google Scholar 

  95. Davidson TL, Carretta JC (1993) Cholecystokinin, but not bombesin, has interoceptive sensory consequences like 1-h food deprivation. Physiol Behav 53(4):737–745

    CAS  PubMed  Google Scholar 

  96. Davidson T, Flynn FW, Grill HJ (1988) Comparison of the interoceptive sensory consequences of CCK, LiCl, and satiety in rats. Behav Neurosci 102(1):134–140

    CAS  PubMed  Google Scholar 

  97. Davidson T, Kanoski SE, Tracy AL, Walls EK, Clegg D, Benoit SC (2005) The interoceptive cue properties of ghrelin generalize to cues produced by food deprivation. Peptides 26(9):1602–1610

    CAS  PubMed  Google Scholar 

  98. Davidson T, Sample C, Swithers S (2014) An application of Pavlovian principles to the problems of obesity and cognitive decline. Neurobiol Learn Mem 108C:172–184

    Google Scholar 

  99. Davidson TL, Tracy AL, Schier LA, Swithers SE (2014) A view of obesity as a learning and memory disorder. J Exp Psychol Anim Learn Cogn 40(3):261–279

    PubMed  PubMed Central  Google Scholar 

  100. Davidson TL, Jarrard LE (1993) A role for hippocampus in the utilization of hunger signals. Behav Neural Biol 59(2):167–171

    CAS  PubMed  Google Scholar 

  101. Holland PC, Lamoureux JA, Han JS, Gallagher M (1999) Hippocampal lesions interfere with Pavlovian negative occasion setting. Hippocampus 9(2):143–157

    CAS  PubMed  Google Scholar 

  102. Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W (2012) The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood–brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav 107(1):26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sample CH, Martin AA, Jones S, Hargrave SL, Davidson TL (2015) Western-style diet impairs stimulus control by food deprivation state cues: implications for obesogenic environments. Appetite 93:13–23

    PubMed  PubMed Central  Google Scholar 

  104. Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, Ribeiro C, Quintela O, Lendoiro E, López-Rivadulla M (2011) Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 1411:28–40

    CAS  PubMed  Google Scholar 

  105. Sharma HS, Ali SF (2006) Alterations in blood–brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci 1074(1):198–224

    CAS  PubMed  Google Scholar 

  106. Yao H, Duan M, Buch S (2011) Cocaine-mediated induction of platelet-derived growth factor: implication for increased vascular permeability. Blood 117(8):2538–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Riley A, Kearns D, Hargrave S, Davidson T (2015) Cocaine impairs serial feature negative learning: implications for cocaine abuse. Drug Alcohol Depend 156, e190

    Google Scholar 

  108. Koob GF (2015) The dark side of emotion: the addiction perspective. Eur J Pharmacol 753:73–87

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162(4):712–725

    CAS  PubMed  Google Scholar 

  110. Koob GF, Arends MA, Le Moal M (2014) Drugs, addiction, and the brain. Academic, Oxford

    Google Scholar 

  111. Anderson MC, Bunce JG, Barbas H (2015) Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol Learn Mem (in press)

    Google Scholar 

  112. Brincat SL, Miller EK (2015) Frequency-specific hippocampal-prefrontal interactions during associative learning. Nat Neurosci 18(4):576–581

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Preparation of this chapter and the research described from the authors’ laboratory were supported in part from grants from the Mellon Foundation to ALR. Requests for reprints should be sent to alriley@american.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Riley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riley, A.L., Clasen, M.M., Friar, M.A. (2016). Conditioned Taste Avoidance Drug Discrimination Procedure: Assessments and Applications. In: Porter, J.H., Prus, A.J. (eds) The Behavioral Neuroscience of Drug Discrimination. Current Topics in Behavioral Neurosciences, vol 39. Springer, Cham. https://doi.org/10.1007/7854_2016_8

Download citation

Publish with us

Policies and ethics