Application of a Combined Approach to Identify New Psychoactive Street Drugs and Decipher Their Mechanisms at Monoamine Transporters

  • Felix P. Mayer
  • Anton Luf
  • Constanze Nagy
  • Marion Holy
  • Rainer Schmid
  • Michael Freissmuth
  • Harald H. SitteEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 32)


Psychoactive compounds can cause acute and long-term health problems and lead to addiction. In addition to well-studied and legally controlled compounds like cocaine, new psychoactive substances (NPS) are appearing in street drug markets as replacement strategies and legal alternatives. NPS are effectively marketed as “designer drugs” or “research chemicals” without any knowledge of their underlying pharmacological mode of action and their potential toxicological effects and obviously devoid of any registration process. As of 2016, the knowledge of structure–activity relationships for most NPS is scarce, and predicting detailed pharmacological activity of newly emerging drugs is a challenging task. Therefore, it is important to combine different approaches and employ biological test systems that are superior to mere chemical analysis in recognizing novel and potentially harmful street drugs. In this chapter, we provide a detailed description of techniques to decipher the molecular mechanism of action of NPS that target the high-affinity transporters for dopamine, norepinephrine, and serotonin. In addition, this chapter provides insights into a combined approach to identify and characterize new psychoactive street drugs of unknown content in a collaboration with the Austrian prevention project “checkit!.”


Amphetamine Analytical identification Bath salts Cocaine Dopamine Monoamine transporters New psychoactive substances Norepinephrine Psychostimulants Research chemicals Serotonin 


  1. 1.
    Baumeister D, Tojo LM, Tracy DK (2015) Legal highs: staying on top of the flood of novel psychoactive substances. Ther Adv Psychopharmacol 5:97–132CrossRefGoogle Scholar
  2. 2.
    Lewin AH, Seltzman HH, Carroll FI, Mascarella SW, Reddy PA (2014) Emergence and properties of spice and bath salts: a medicinal chemistry perspective. Life Sci 97:9–19CrossRefGoogle Scholar
  3. 3.
    Brandt SD, King LA, Evans-Brown M (2014) The new drug phenomenon. Drug Test Anal 6:587–597CrossRefGoogle Scholar
  4. 4.
    Lindigkeit R, Boehme A, Eiserloh I, Luebbecke M, Wiggermann M, Ernst L et al (2009) Spice: a never ending story? Forensic Sci Int 191:58–63CrossRefGoogle Scholar
  5. 5.
    Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE, Wiley JL (2014) Baths salts, spice, and related designer drugs: the science behind the headlines. J Neurosci 34:15150–15158CrossRefGoogle Scholar
  6. 6.
    Miliano C, Serpelloni G, Rimondo C, Mereu M, Marti M, De Luca MA (2016) Neuropharmacology of new psychoactive substances (NPS): focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Front Neurosci 10:153CrossRefGoogle Scholar
  7. 7.
    Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42CrossRefGoogle Scholar
  8. 8.
    Ross EA, Watson M, Goldberger B (2011) “Bath salts” intoxication. N Engl J Med 365:967–968CrossRefGoogle Scholar
  9. 9.
    Soussan C, Kjellgren A (2016) The users of novel psychoactive substances: online survey about their characteristics, attitudes and motivations. Int J Drug Policy 32:77–84CrossRefGoogle Scholar
  10. 10.
    Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25CrossRefGoogle Scholar
  11. 11.
    Sitte HH, Freissmuth M (2010) The reverse operation of Na(+)/Cl(−)-coupled neurotransmitter transporters – why amphetamines take two to tango. J Neurochem 112:340–355CrossRefGoogle Scholar
  12. 12.
    Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50CrossRefGoogle Scholar
  13. 13.
    Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433CrossRefGoogle Scholar
  14. 14.
    Egana LA, Cuevas RA, Baust TB, Parra LA, Leak RK, Hochendoner S et al (2009) Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. J Neurosci 29:4592–4604CrossRefGoogle Scholar
  15. 15.
    Schuldiner S, Steiner-Mordoch S, Yelin R, Wall SC, Rudnick G (1993) Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters. Mol Pharmacol 44:1227–1231PubMedGoogle Scholar
  16. 16.
    Freyberg Z, Sonders MS, Aguilar JI, Hiranita T, Karam CS, Flores J et al (2016) Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat Commun 7:10652CrossRefGoogle Scholar
  17. 17.
    Baumann MH, Bulling S, Benaderet TS, Saha K, Ayestas MA, Partilla JS et al (2014) Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates. Neuropsychopharmacology 39:1355–1365CrossRefGoogle Scholar
  18. 18.
    Pifl C, Reither H, Hornykiewicz O (2015) The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol 755:119–126CrossRefGoogle Scholar
  19. 19.
    Stockner T, Montgomery TR, Kudlacek O, Weissensteiner R, Ecker GF, Freissmuth M et al (2013) Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model. PLoS Comput Biol 9(2):e1002909CrossRefGoogle Scholar
  20. 20.
    Penmatsa A, Gouaux E (2014) How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J Physiol 592:863–869CrossRefGoogle Scholar
  21. 21.
    Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437:215–223CrossRefGoogle Scholar
  22. 22.
    Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90CrossRefGoogle Scholar
  23. 23.
    Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339CrossRefGoogle Scholar
  24. 24.
    Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA et al (2015) Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172:2433–2444CrossRefGoogle Scholar
  25. 25.
    Kolanos R, Sakloth F, Jain AD, Partilla JS, Baumann MH, Glennon RA (2015) Structural modification of the designer stimulant alpha-pyrrolidinovalerophenone (alpha-PVP) influences potency at dopamine transporters. ACS Chem Nerosci 6:1726–1731CrossRefGoogle Scholar
  26. 26.
    Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M et al (2015) ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40:1321–1331CrossRefGoogle Scholar
  27. 27.
    Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW et al (2016) Binding mode selection determines the action of ecstasy homologs at monoamine transporters. Mol Pharmacol 89:165–175CrossRefGoogle Scholar
  28. 28.
    Brunt TM, Nagy C, Bücheli A, Martins D, Ugarte M, Beduwe C, Ventura Vilamala M (2016) Drug testing in Europe: monitoring results of the Trans European Drug Information (TEDI) project. Drug Test Anal. doi: 10.1002/dta.1954 [Epub ahead of print]CrossRefPubMedGoogle Scholar
  29. 29.
    Ostermann KM, Luf A, Lutsch NM, Dieplinger R, Mechtler TP, Metz TF et al (2014) MALDI Orbitrap mass spectrometry for fast and simplified analysis of novel street and designer drugs. Clin Chim Acta 433:254–258CrossRefGoogle Scholar
  30. 30.
    Rosenauer R, Luf A, Holy M, Freissmuth M, Schmid R, Sitte HH (2013) A combined approach using transporter-flux assays and mass spectrometry to examine psychostimulant street drugs of unknown content. ACS Chem Nerosci 4:182–190CrossRefGoogle Scholar
  31. 31.
    Hofmaier T, Luf A, Seddik A, Stockner T, Holy M, Freissmuth M et al (2014) Aminorex, a metabolite of the cocaine adulterant levamisole, exerts amphetamine like actions at monoamine transporters. Neurochem Int 73:32–41CrossRefGoogle Scholar
  32. 32.
    Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752CrossRefGoogle Scholar
  33. 33.
    Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S et al (2005) Serotonin-transporter mediated efflux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49:811–819CrossRefGoogle Scholar
  34. 34.
    Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373PubMedGoogle Scholar
  35. 35.
    Sitte HH, Scholze P, Schloss P, Pifl C, Singer EA (2000) Characterization of carrier-mediated efflux in human embryonic kidney 293 cells stably expressing the rat serotonin transporter: a superfusion study. J Neurochem 74:1317–1324CrossRefGoogle Scholar
  36. 36.
    Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47:544–550PubMedGoogle Scholar
  37. 37.
    Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698:1–5CrossRefGoogle Scholar
  38. 38.
    Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M et al (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562CrossRefGoogle Scholar
  39. 39.
    Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF et al (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203CrossRefGoogle Scholar
  40. 40.
    Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH (2000) Transporter-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther 293:870–878PubMedGoogle Scholar
  41. 41.
    Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144:249–263CrossRefGoogle Scholar
  42. 42.
    Mollenhauer HH, Morre DJ, Rowe LD (1990) Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031:225–246CrossRefGoogle Scholar
  43. 43.
    Rudnick G, Kirk KL, Fishkes H, Schuldiner S (1989) Zwitterionic and anionic forms of a serotonin analog as transport substrates. J Biol Chem 264:14865–14868PubMedGoogle Scholar
  44. 44.
    Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151PubMedGoogle Scholar
  45. 45.
    Scholze P, Norregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277:21505–21513CrossRefGoogle Scholar
  46. 46.
    Steinkellner T, Yang JW, Montgomery TR, Chen WQ, Winkler MT, Sucic S et al (2012) Ca(2+)/calmodulin-dependent protein kinase IIalpha (alphaCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome. J Biol Chem 287:29627–29635CrossRefGoogle Scholar
  47. 47.
    Ukairo OT, Ramanujapuram S, Surratt CK (2007) Fluctuation of the dopamine uptake inhibition potency of cocaine, but not amphetamine, at mammalian cells expressing the dopamine transporter. Brain Res 1131:68–76CrossRefGoogle Scholar
  48. 48.
    Shoichet BK (2006) Interpreting steep dose-response curves in early inhibitor discovery. J Med Chem 49:7274–7277CrossRefGoogle Scholar
  49. 49.
    Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121:1735–1743CrossRefGoogle Scholar
  50. 50.
    Glowinski J, Axelrod J (1965) Effect of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain. J Pharmacol Exp Ther 149:43–49PubMedGoogle Scholar
  51. 51.
    Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G et al (2015) Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci U S A 112:E7138–E7147PubMedPubMedCentralGoogle Scholar
  52. 52.
    Giambalvo CT (1992) Protein kinase C and dopamine transport – 1. Effects of amphetamine in vivo. Neuropharmacology 31:1201–1210CrossRefGoogle Scholar
  53. 53.
    Gnegy ME, Khoshbouei H, Berg KA, Javitch JA, Clarke WP, Zhang M et al (2004) Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol Pharmacol 66:137–143CrossRefGoogle Scholar
  54. 54.
    Allen JK, Wilkinson M, Soo EC, Hui JP, Chase TD, Carrey N (2010) Chronic low dose Adderall XR down-regulates cfos expression in infantile and prepubertal rat striatum and cortex. Neuroscience 169:1901–1912CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Felix P. Mayer
    • 1
  • Anton Luf
    • 2
  • Constanze Nagy
    • 3
  • Marion Holy
    • 1
  • Rainer Schmid
    • 2
  • Michael Freissmuth
    • 1
  • Harald H. Sitte
    • 1
    • 4
    Email author
  1. 1.Center of Physiology and Pharmacology, Institute of PharmacologyMedical University ViennaViennaAustria
  2. 2.Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
  3. 3.checkit! – Suchthilfe Wien GmbHViennaAustria
  4. 4.Center for Addiction Research and Science – Medical University ViennaViennaAustria

Personalised recommendations