Skip to main content

Hypocretins and Arousal

  • Chapter
  • First Online:
Behavioral Neuroscience of Orexin/Hypocretin

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 33))

Abstract

How the brain controls vigilance state transitions remains to be fully understood. The discovery of hypocretins, also known as orexins, and their link to narcolepsy has undoubtedly allowed us to advance our knowledge on key mechanisms controlling the boundaries and transitions between sleep and wakefulness. Lack of function of hypocretin neurons (a relatively simple and non-redundant neuronal system) results in inappropriate control of sleep states without affecting the total amount of sleep or homeostatic mechanisms. Anatomical and functional evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain and interact with major neuromodulator systems in order to regulate physiological processes underlying wakefulness, attention, and emotions. Here, we review the role of hypocretins/orexins in arousal state transitions, and discuss possible mechanisms by which such a relatively small population of neurons controls fundamental brain state dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. de Lecea L et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327. doi:10.1073/Pnas.95.1.322

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–85

    Article  CAS  PubMed  Google Scholar 

  3. Nambu T et al (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    Article  CAS  PubMed  Google Scholar 

  4. Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakurai T et al (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308. doi:10.1016/j.neuron.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  6. Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    Article  CAS  PubMed  Google Scholar 

  7. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75

    Article  CAS  PubMed  Google Scholar 

  8. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424. doi:10.1038/nature06310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brisbare-Roch C et al (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13:150–155. doi:10.1038/nm1544

    Article  CAS  PubMed  Google Scholar 

  10. Chemelli RM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  11. Vassalli A et al (2013) Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children. Brain 136:1592–1608. doi:10.1093/brain/awt069

    Article  PubMed  Google Scholar 

  12. Hara J et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354. doi:10.1016/S0896-6273(01)00293-8

    Article  CAS  PubMed  Google Scholar 

  13. Liu M et al (2011) Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 31:6028–6040. doi:10.1523/Jneurosci.6069-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mieda M et al (2011) Differential roles of orexin receptor-1 and-2 in the regulation of non-REM and REM sleep. J Neurosci 31:6518–6526. doi:10.1523/Jneurosci.6506-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE (2013) Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 33:9734–9742. doi:10.1523/JNEUROSCI.5632-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798. doi:10.1016/j.neuron.2005.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720. doi:10.1523/JNEUROSCI.1887-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870. doi:10.1016/j.neuroscience.2008.02.058

    Article  CAS  PubMed  Google Scholar 

  19. Burdakov D, Karnani MM, Gonzalez A (2013) Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 121:117–124. doi:10.1016/j.physbeh.2013.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181. doi:10.1038/nrn2092

    Article  CAS  PubMed  Google Scholar 

  21. Yamanaka A et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    Article  CAS  PubMed  Google Scholar 

  22. Mochizuki T et al (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 108:4471–4476. doi:10.1073/pnas.1012456108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mochizuki T et al (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24:6291–6300. doi:10.1523/JNEUROSCI.0586-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li SB, Jones JR, de Lecea L (2016) Hypocretins, neural systems, physiology, and psychiatric disorders. Curr Psychiatry Rep 18:7. doi:10.1007/s11920-015-0639-0

    Article  PubMed  Google Scholar 

  25. de Lecea L, Huerta R (2014) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5:16. doi:10.3389/fphar.2014.00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter ME et al (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109:E2635–E2644. doi:10.1073/Pnas.1202526109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carter ME et al (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533. doi:10.1038/Nn.2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dahan L et al (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241. doi:10.1038/sj.npp.1301251

    Article  CAS  PubMed  Google Scholar 

  29. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202. doi:10.1523/JNEUROSCI.2244-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wisor J (2013) Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 4. doi:10.3389/Fneur.2013.00139. Artn 139

  31. Wisor JP et al (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lazarus M, Chen JF, Urade Y, Huang ZL (2013) Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol 23:780–785. doi:10.1016/j.conb.2013.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119:1033–1044

    Article  CAS  PubMed  Google Scholar 

  34. Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21:9273–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schöne C et al (2012) Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 32:12437–12443. doi:10.1523/JNEUROSCI.0706-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7:697–704. doi:10.1016/j.celrep.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eggermann E et al (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108:177–181

    Article  CAS  PubMed  Google Scholar 

  38. Fadel J, Burk JA (2010) Orexin/hypocretin modulation of the basal forebrain cholinergic system: role in attention. Brain Res 1314:112–123. doi:10.1016/j.brainres.2009.08.046

    Article  CAS  PubMed  Google Scholar 

  39. Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387

    Article  CAS  PubMed  Google Scholar 

  40. Ishibashi M et al (2015) Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca(2+)-dependent resonance in LDT and PPT cholinergic neurons. Front Neurol 6:120. doi:10.3389/fneur.2015.00120

    Article  PubMed  PubMed Central  Google Scholar 

  41. Irmak SO, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37:1941–1951. doi:10.5665/sleep.4246

    Article  PubMed  Google Scholar 

  42. Xu M et al (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647. doi:10.1038/nn.4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kohlmeier KA et al (2013) Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 7:246. doi:10.3389/fnins.2013.00246

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alam MN et al (2010) GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 167:920–928. doi:10.1016/j.neuroscience.2010.02.038

    Article  CAS  PubMed  Google Scholar 

  45. Balcita-Pedicino JJ, Sesack SR (2007) Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 503:668–684. doi:10.1002/cne.21420

    Article  PubMed  Google Scholar 

  46. Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22:9453–9464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vazquez-DeRose J et al (2014) Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct. doi:10.1007/s00429-014-0946-y

    Article  PubMed  Google Scholar 

  48. Avolio E, Alo R, Carelli A, Canonaco M (2011) Amygdalar orexinergic-GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behav Brain Res 218:288–295. doi:10.1016/J.Bbr.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  49. Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111:231–239

    Article  CAS  PubMed  Google Scholar 

  50. Harrison NL (2007) Mechanisms of sleep induction by GABA(A) receptor agonists. J Clin Psychiatry 68(Suppl 5):6–12

    CAS  PubMed  Google Scholar 

  51. Matsuki T et al (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106:4459–4464. doi:10.1073/pnas.0811126106

    Article  PubMed  PubMed Central  Google Scholar 

  52. Apergis-Schoute J et al (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35:5435–5441. doi:10.1523/JNEUROSCI.5269-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25:173–183. doi:10.1523/JNEUROSCI.4015-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gotter AL et al (2014) Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 15:109. doi:10.1186/1471-2202-15-109

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376. doi:10.1016/S0092-8674(00)81965-0

    Article  CAS  PubMed  Google Scholar 

  56. Willie JT et al (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730

    Article  CAS  PubMed  Google Scholar 

  57. Tsujino N et al (2013) Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One 8:e70012. doi:10.1371/journal.pone.0070012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hasegawa E, Yanagisawa M, Sakurai T, Mieda M (2014) Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 124:604–616. doi:10.1172/Jci71017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Muraki Y et al (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24:7159–7166. doi:10.1523/Jneurosci.1027-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bassetti CL et al (2010) Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J Sleep Res 19:620–623. doi:10.1111/j.1365-2869.2010.00819.x

    Article  PubMed  Google Scholar 

  62. Valko PO et al (2015) Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol 77:177–182. doi:10.1002/ana.24298

    Article  PubMed  Google Scholar 

  63. Valko PO et al (2013) Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol 74:794–804. doi:10.1002/ana.24019

    Article  CAS  PubMed  Google Scholar 

  64. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042. doi:10.1016/j.neuron.2010.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sorooshyari S, Huerta R, de Lecea L (2015) A framework for quantitative modeling of neural circuits involved in sleep-to-wake transition. Front Neurol 6:32. doi:10.3389/fneur.2015.00032

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rolls A et al (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci U S A 108:13305–13310. doi:10.1073/pnas.1015633108

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mosqueiro T, de Lecea L, Huerta R (2014) Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission. New J Phys 16. doi:10.1088/1367-2630/16/11/115010

  68. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34. doi:10.1016/j.neuron.2013.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis de Lecea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Li, SB., Giardino, W.J., de Lecea, L. (2016). Hypocretins and Arousal. In: Lawrence, A.J., de Lecea, L. (eds) Behavioral Neuroscience of Orexin/Hypocretin. Current Topics in Behavioral Neurosciences, vol 33. Springer, Cham. https://doi.org/10.1007/7854_2016_58

Download citation

Publish with us

Policies and ethics