New World Tryptamine Hallucinogens and the Neuroscience of Ayahuasca

Chapter
Part of the Understanding Complex Systems book series (CTBN, volume 36)

Abstract

New World indigenous peoples are noted for their sophisticated use of psychedelic plants in shamanic and ethnomedical practices. The use of psychedelic plant preparations among New World tribes is far more prevalent than in the Old World. Yet, although these preparations are botanically diverse, almost all are chemically similar in that their active principles are tryptamine derivatives, either DMT or related constituents. Part 1 of this paper provides an ethnopharmacological overview of the major tryptamine-containing New World hallucinogens. Part 2 focuses on ayahuasca and its effects on the human brain. Using complementary neurophysiological and neuroimaging techniques, we have identified brain areas involved in the cognitive effects induced by this complex botanical preparation. Initial SPECT data showed that ayahuasca modulated activity in higher order association areas of the brain. Increased blood perfusion was observed mainly in anterior brain regions encompassing the frontomedial and anterior cingulate cortices of the frontal lobes, and in the medial regions of the temporal lobes. On the other hand, applying spectral analysis and source location techniques to cortical electrical signals, we found changes in neuronal activity that predominated in more posterior sensory-selective areas of the brain. Now, using functional connectivity analysis of brain oscillations we have been able to reconcile these seemingly contradictory findings. By measuring transfer entropy, a metric based on information theory, we have shown that ayahuasca temporarily modifies the ordinary flow of information within the brain. We propose a model in which ayahuasca reduces top-down constraints and facilitates bottom-up information transfer. By simultaneously enhancing endogenous cortical excitability and reducing higher-order cognitive control, ayahuasca temporarily disrupts neural hierarchies allowing inner exploration and a new outlook on reality.

Keywords

Tryptamine derivatives Tryptamine hallucinogen Hallucinogenic New World Shamanism Botany Chemistry Ethnopharmacology 

References

  1. Borhegyi SF (1961) Miniature mushroom stones from Guatemala. Am Antiq 26:498–504CrossRefGoogle Scholar
  2. Bouso JC, Palhano-Fontes F, Rodríguez-Fornells A, Ribeiro S, Sanches R, Crippa JA, Hallak JEC, de Araujo DB, Riba J (in press) Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. Eur NeuropsychopharmacolGoogle Scholar
  3. Bouso JC, González D, Fondevila S, Cutchet M, Fernández X, Ribeiro Barbosa PC, Alcázar-Córcoles MÁ, Araújo WS, Barbanoj MJ, Fábregas JM, Riba J (2012) Personality, psychopathology, life attitudes and neuropsychological performance among ritual users of ayahuasca: a longitudinal study. PLoS ONE 7:e42421CrossRefGoogle Scholar
  4. Bouso JC, Fábregas JM, Antonijoan RM, Rodríguez-Fornells A, Riba J (2013) Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users. Psychopharmacology 230:415–424CrossRefGoogle Scholar
  5. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583CrossRefGoogle Scholar
  6. Cinq-Mars J, Morlan RE (1999) Bluefish caves and old crow basin: a new rapport. In: Bonnichsen R, and Turnmire KL (eds) Ice age peoples of North America, Corvallis: Oregon State University Press for the Center for the Study of the First Americans, pp. 200–212Google Scholar
  7. Cloninger CR, Svrakic DM, Przybeck TR (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–990CrossRefGoogle Scholar
  8. Cooper JM (1949) Stimulants and narcotics. In: Handbook of South American Indians, vol 5. Bureau of American Ethnology Bulletin #143. Smithsonian Institution, WashingtonGoogle Scholar
  9. Dale GD (1991) The Santo Daime Doctrine: an interview with Alex Polari de Alverga. Shaman’s Drum 22:30–41Google Scholar
  10. Daly JW, Witkop B (1971) Chemistry and pharmacology of frog venoms. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol 2. Academic PressCrossRefGoogle Scholar
  11. Davis W, Weil AT (1992) Identity of a new world psychoactive toad. Ancient Mesoamerica 3:51–59CrossRefGoogle Scholar
  12. Davis W, Weil AT (1994) Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol 41:1–8CrossRefGoogle Scholar
  13. De Araujo DB, Ribeiro S, Cecchi GA, Carvalho FM, Sanchez TA, Pinto JP, de Martinis BS, Crippa JA, Hallak JEC, Santos AC (2012) Seeing with the eyes shut: neural basis of enhanced imagery following ayahuasca ingestion. Hum Brain Mapp 33:2550–2560CrossRefGoogle Scholar
  14. Der Marderosian AH, Pinkley HV, Dobbins MF (1968) Native use and occurrence of N, N-dimethyltryptamine in the leaves of Banisteriopsis rusbyana. Am J Pharm 140:137–147PubMedGoogle Scholar
  15. Emboden W (1979) Narcotic plants. Collier Books, New YorkGoogle Scholar
  16. Erowid.org (2001a) A list of the (186) known psilocybin mushrooms. https://www.erowid.org/plants/mushrooms/mushrooms_info12.shtml. Accessed 27 Dec 2014
  17. Erowid.org (2001b) Legal status of ayahuasca in Brazil. http://www.erowid.org/chemicals/ayahuasca/ayahuasca_law6.shtml. Accessed 29 Dec 2014
  18. Erowid.org (2006) UDV wins Supreme Court decision on preliminary injunction. http://www.erowid.org/chemicals/ayahuasca/ayahuasca_law22.shtml. Accessed 29 Dec 2014
  19. Erowid.org (2012) Santo Daime wins court decision. http://www.erowid.org/chemicals/ayahuasca/ayahuasca_law24.shtml. Accessed 29 Dec 2014
  20. Fish MS, Johnson NM, Horning EC (1955) Piptadenia alkaloids—indole bases of Piptadenia peregrina (L.) Benth and related species. J Am Chem Soc 77:5892–5895CrossRefGoogle Scholar
  21. Frankel PS, Cunningham KA (2002) The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain. Brain Res 958:251–260CrossRefGoogle Scholar
  22. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836CrossRefGoogle Scholar
  23. Gates B (1979) New names in Banisteriopsis and Diplopterys (Malpighiaceae) of the Guayana highland. Brittonia 31:108–109CrossRefGoogle Scholar
  24. Gewirtz JC, Chen AC, Terwilliger R, Duman RC, Marek GJ (2002) Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol Biochem Behav 73:317–326CrossRefGoogle Scholar
  25. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452CrossRefGoogle Scholar
  26. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, Kovar KA, Hermle L, Büll U, Sass H (1999) Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 20:565–581CrossRefGoogle Scholar
  27. Guzmán G, Allen JW, Garrtz J (2000) A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion. Annalidei Museocivico - Rovereto, Italia 14:189–280 (in English)Google Scholar
  28. Heim R, Hofmann A (1958) Isolement de la Psilocybine à partir du Stropharia cubensis Earle et d’autrese spèces de champignons hallucinogens mexicains appartenant au genre Psilocybe. Extrait des Comptesrendus des séances de l’Académie des Sciences, t 247:557–561Google Scholar
  29. Hermle L, Fünfgeld M, Oepen G, Botsch H, Borchardt D, Gouzoulis E, Fehrenbach RA, Spitzer M (1992) Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol Psychiatry 32:976–991CrossRefGoogle Scholar
  30. Holmstedt B, Lindgren JE (1967) Chemical constituents and pharmacology of South American snuffs. In: Efron DH, Holmstedt B, Kline NS (eds) Ethnopharmacologic search for psychoactive drugs, US Public Health Service Publication #1645. US Government Printing OfficeGoogle Scholar
  31. Kennedy AB (1982) Ecce Bufo: the toad in nature and in Olmec iconography. Curr Anthropol 23:273–290CrossRefGoogle Scholar
  32. Luna LE (1984) The concept of plants as teachers among four mestizo shamans of Iquitos, northeastern Peru. J Ethnopharmacol 11:135–156CrossRefGoogle Scholar
  33. Macrae WD, Towers GH (1984a) Justicia pectoralis: a study of the basis for its use as a hallucinogenic snuff ingredient. J Ethnopharmacol 12:93–111CrossRefGoogle Scholar
  34. Macrae WD, Towers GH (1984b) An ethnopharmacological examination of Virola elongata bark: a South American arrow poison. J Ethnopharmacol 12:75–92CrossRefGoogle Scholar
  35. McKenna DJ (2000) An unusual experience with “hoasca”: a lesson from the teacher. In: Ayahuasca Reader: encounters with the Amazon’s sacred vine. Synergetic Press, Santa Fe, pp 154–157Google Scholar
  36. McKenna DJ, Towers GH, Abbott FS (1984a) Monoamine oxidase inhibitors in South American hallucinogenic plants part II: constituents of orally active Myristicaceous hallucinogens. J Ethnopharmacol 12:179–211CrossRefGoogle Scholar
  37. McKenna DJ, Towers GH, Abbott FS (1984b) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and ß-carboline constituents of ayahuasca. J Ethnopharmacol 10:195–223CrossRefGoogle Scholar
  38. McKenna DJ, Luna LE, Towers GH (1995) Biodynamic constituents in ayahuasca admixture plants: an uninvestigated folk pharmacopoeia. In: von Reis S, Schultes RE (eds) Ethnobotany: evolution of a discipline. Dioscorides Press, PortlandGoogle Scholar
  39. Mesulam MM (2000) Behavioral neuroanatomy: large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In: Mesulam MM (ed) Principles of behavioral and cognitive neurology. Oxford University Press, New York, pp 1–120Google Scholar
  40. Mesulam M (2008) Representation, inference, and transcendent encoding in neurocognitive networks of the human brain. Ann Neurol 64:367–378CrossRefGoogle Scholar
  41. Metzner R (1999) Ayahuasca: hallucinogens, consciousness and the spirit of nature. Thunder’s Mouth Press, New YorkGoogle Scholar
  42. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, Sessa B, Papadopoulos A, Bolstridge M, Singh KD, Feilding A, Friston KJ, Nutt DJ (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33:15171–15183CrossRefGoogle Scholar
  43. Naranjo P (1995) Archeology and psychoactive plants. In: von Reis S, Schultes RE (eds) Ethnobotany: evolution of a discipline. Dioscorides Press, PortlandGoogle Scholar
  44. Ott J (1998) Pharmahuasca, anahuasca, vinho de Jurema: human pharmacology of oral DMT + harmine. In: Müller-Ebeling C (ed) Special: psychoactivity. Yearbook for ethnomedicine and the study of consciousness, 6/7 (1997–1998). Berlin, VWBGoogle Scholar
  45. Ott J (2001) Pharmañopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine. J Psychoactive Drugs 33:273–281CrossRefGoogle Scholar
  46. Pachter IJ, Zacharius DE, Ribeiro O (1959) Indole alkaloids of Acer saccharinum (the silver maple), Dictyloma incanescens, Piptadenia colubrina, and Mimosa hostilis. J Org Chem 24:1285–1287CrossRefGoogle Scholar
  47. Pinkley HV (1969) Plant admixtures to ayahuasca, the South American hallucinogenic drink. Lloydia 32:305–314PubMedGoogle Scholar
  48. Riba J, Anderer P, Jané F, Saletu B, Barbanoj MJ (2004) Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology 50:89–101CrossRefGoogle Scholar
  49. Riba J, Romero S, Grasa E, Mena E, Carrió I, Barbanoj MJ (2006) Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology 186:93–98CrossRefGoogle Scholar
  50. Rivier L, Lindgren J (1972) Ayahuasca, the South American hallucinogenic drink: ethnobotanical and chemical investigations. Econ Bot 29:101–129CrossRefGoogle Scholar
  51. Roland PE, Gulyás B (1994) Visual imagery and visual representation. Trends Neurosci 17:281–287; discussion 294–297Google Scholar
  52. Sakai K, Miyashita Y (1994) Visual imagery: an interaction between memory retrieval and focal attention. Trends Neurosci 17:287–289CrossRefGoogle Scholar
  53. Schultes RE (1969) Virola as an orally administered hallucinogen. Harvard Bot Mus Leaflets 22:229–240Google Scholar
  54. Schultes RE (1970a) The New World Indians and their hallucinogenic plants. Morris Arboretum Bull 21:3–14Google Scholar
  55. Schultes RE (1970b) The plant kingdom and hallucinogens (part III). Bull Narc 22:25–53Google Scholar
  56. Schultes RE, Hofmann A (1981) The botany and chemistry of hallucinogens, 2nd edn. Charles C. Thomas Publishers, Springfield, IllinoisGoogle Scholar
  57. Schultes RE, Hofmann A (2001) Plants of the gods: their sacred, healing, and hallucinogenic powers. Healing Arts PressGoogle Scholar
  58. Schultes RE, Holmstedt B (1968) The vegetal ingredients of the Myristicaceous snuffs of the Northwest Amazon. Rhodora 70:113–160Google Scholar
  59. Smith TA (1977) Tryptamine and related compounds in plants. Phytochemistry 16:171–175CrossRefGoogle Scholar
  60. Torres CM (1995) Archeological evidence for the antiquity of psychoactive plant use in the central Andes. Ann Mus Civ Reverero 11:291–326Google Scholar
  61. Torres CM, Repke DB (2006) Anadenanthera: visionary plant of ancient South America. Routledge, LondonGoogle Scholar
  62. Torres CM, Repke DB, Chan K, McKenna D, Llagostera A, Schultes RE (1992) Botanical, chemical, and contextual analysis of archaeological snuff powders from San Pedro de Atacama, Northern Chile. Curr Anthropol 32:640–649CrossRefGoogle Scholar
  63. Vepsäläinen JJ, Auriola S, Tukiainen M, Ropponen N, Callaway JC (2005) Isolation and characterization of yuremamine, a new phytoindole. Planta Med 71:1053–1057CrossRefGoogle Scholar
  64. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16:357–372CrossRefGoogle Scholar
  65. Wassén SH (1964) Some general viewpoints in the study of native drugs especially from the West indies and South America. Ethnos 1–2:97–120CrossRefGoogle Scholar
  66. Wassén SH (1967) Anthropological survey of the use of South American snuffs. In: Efron DH, Holmstedt B, Kline NS (eds) Ethnopharmacologic search for psychoactive drugs, US Public Health Service Publication #1645. US Government Printing OfficeGoogle Scholar
  67. Wasson RG (1968) Soma: divine mushroom of immortality. Harcourt, Brace, JovanovichGoogle Scholar
  68. Wasson RG (1980) The wondrous mushroom: mycolatry in Mesoamerica. McGraw-Hill Book Company, New YorkGoogle Scholar
  69. Wasson RG, Wasson V (1957) Seeking the magic mushroom. Life Magazine, 13 May 1957Google Scholar
  70. Weil AT, Davis W (1994) Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol 41(1–2):1–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Director of EthnopharmacologyHeffter Research InstituteSanta FeUSA
  2. 2.Human Neuropsychopharmacology Research GroupSant Pau Institute of Biomedical Research (IIB-Sant Pau)BarcelonaSpain
  3. 3.Department of Pharmacology and TherapeuticsUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain

Personalised recommendations