Skip to main content

Basal Forebrain Cholinergic System and Memory

  • Chapter
Behavioral Neuroscience of Learning and Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 37))

Abstract

Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.

Blake and Boccia—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartfai T, Bedecs K, Land T, Langel U, Bertorelli R, Girotti P, Consolo S, Xu XJ, Wiesenfeld-Hallin Z, Nilsson S et al (1991) M-15: high-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus, and spinal cord. Proc Natl Acad Sci USA 88(23):10961–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Sci 217:408–414

    Article  CAS  Google Scholar 

  • Basheer R, Bauer A, Elmenhorst D, Ramesh V, McCarley RW (2007) Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain. NeuroReport 18:1895–1899

    Article  CAS  PubMed  Google Scholar 

  • Basheer R, Halldner L, Alanko L, McCarley RW, Fredholm BB, Porkka-Heiskanen T (2001) Opposite changes in adenosine A1 and A2A receptor mRNA in the rat following sleep deprivation. Neuroreport 12(8):1577–1580

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, MacGarvey U, Swartz KJ (1990) Galanin immunoreactivity is increased in the nucleus basalis of Meynert in Alzheimer’s disease. Ann Neurol 28(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Belarbi K, Schindowski K, Burnouf S, Caillierez R, Grosjean ME, Demeyer D, Hamdane M, Sergeant N, Blum D, Buée L (2009) Early Tau pathology involving the septo-hippocampal pathway in a Tau transgenic model: relevance to Alzheimer’s disease. Curr Alzheimer Res 6(2):152–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzing WC, Kordower JH, Mufson EJ (1993) Galanin immunoreactivity within the primate basal forebrain: evolutionary change between monkeys and apes. J Comp Neurol 336(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Bertorelli R, Forloni G, Consolo S (1991) Modulation of cortical in vivo acetylcholine release by the basal nuclear complex: role of the pontomesencephalic tegmental area. Brain Res 563:353–356

    Article  CAS  PubMed  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760

    Article  CAS  PubMed  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21:285–300

    Article  CAS  PubMed  Google Scholar 

  • Boccia MM, Baratti CM (2000) Involvement of central cholinergic mechanisms in the effects of oxytocin and an oxytocin receptor antagonist on retention performance in mice. Neurobiol Learn Mem 74(3):217–228

    Article  CAS  PubMed  Google Scholar 

  • Boccia MM, Kopf SR, Baratti CM (1998) Effects of a single administration of oxytocin or vasopressin and their interactions with two selective receptor antagonists on memory storage in mice. Neurobiol Learn Mem 69(2):136–146

    Article  CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP, Hauser DL (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1:256–262

    Article  CAS  PubMed  Google Scholar 

  • Bubser M, Byun N, Wood MR, Jones CK (2012) Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb Exp Pharmacol 208:121–166

    Article  CAS  Google Scholar 

  • Chang HC, Gaddum JH (1933) Choline esters in tissue extracts. J Physiol 79:255–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan‐Palay V (1988) Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J Comp Neurol 273(4): 543–557

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V (1991) Alterations in the locus coeruleus in dementias of Alzheimer’s and Parkinson’s disease. Prog Brain Res 88:625–630

    Article  CAS  PubMed  Google Scholar 

  • Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonist. J Neurochem 97:1611–1626

    Article  CAS  PubMed  Google Scholar 

  • Cornwell-Jones CA, Decker MW, Chang JW, Cole B, Goltz KM, Tran T et al (1989) Neonatal 6-hydroxydopa, but not DSP-4, elevates brainstem monoamines and impairs inhibitory avoidance learning in developing rats. Brain Res 493:258–268

    Article  CAS  PubMed  Google Scholar 

  • Counts SE, Perez SE, Ginsberg SD, Mufson EJ (2010) Neuroprotective role for galanin in Alzheimer’s disease. Experientia Suppl 102:143–162

    Article  CAS  Google Scholar 

  • Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E (2001) Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry 49(3):175–184

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Sci 219(4589):1184–1190

    Article  CAS  Google Scholar 

  • Crawley JN (1996) Galanin-acetylcholine interactions: relevance to memory and Alzheimer’s disease. Life Sci 58(24):2185–2199

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Mufson EJ, Hohmann JG, Teklemichael D, Steiner RA, Holmberg K, Xu ZQ, Blakeman KH, Xu XJ, Wiesenfeld-Hallin Z, Bartfai T, Hökfelt T (2002) Galanin overexpressing transgenic mice. Neuropeptides 36(2–3):145–156

    Article  CAS  PubMed  Google Scholar 

  • Dale HH, Dudley HW (1929) The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol (Lond) 68:97–123

    Article  CAS  Google Scholar 

  • Dale HH, Laidlaw PP, Symons CT (1910) A reversed action of the vagus on the mammalian heart. J Physiol (Lond) 41:1–18

    Article  CAS  Google Scholar 

  • Dalrymple-Alford JC (1994) Behavioral effects of basal forebrain grafts after dorsal septohippocampal pathway lesions. Brain Res 661(1–2):243–258

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg H, Pabst M, Braganza O, Schoch S, Niediek J, Bayraktar M, Mormann F, Beck H (2015) Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neuroscience 35(22):8394–8410

    Article  CAS  Google Scholar 

  • Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7(2):151–168

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare Mannelli L, Tenci B, Zanardelli M et al (2015) α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity. Neural Plast 2015:396908

    Google Scholar 

  • Díaz-Cabiale Z, Flores-Burgess A, Parrado C, Narváez M, Millón C, Puigcerver A, Coveñas R, Fuxe K, Narváez JA (2014) Galanin receptor/neuropeptide y receptor interactions in the central nervous system. Curr Protein Pept Sci 15(7):666–672

    Article  PubMed  CAS  Google Scholar 

  • Ding X, MacTavish D, Kar S, Jhamandas JH (2006) Galanin attenuates beta-amyloid (Abeta) toxicity in rat cholinergic basal forebrain neurons. Neurobiol Dis 21(2):413–420

    Article  CAS  PubMed  Google Scholar 

  • dos Santos VV, Santos DB, Lach G, Rodrigues AL, Farina M, De Lima TC, Prediger RD (2013) Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1–40)) administration in mice. Behav Brain Res 244:107–115

    Article  PubMed  CAS  Google Scholar 

  • Dougherty KD, Milner TA (1999) Cholinergic septal afferent terminals preferentially contact neuropeptide Y-containing interneurons compared to parvalbumin-containing interneurons in the rat dentate gyrus. J Neuroscience 19(22):10140–10152

    CAS  Google Scholar 

  • Dringenberg HC, Olmstead MC (2003) Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience 119(3):839–853

    Article  CAS  PubMed  Google Scholar 

  • Dutar P, Lamour Y, Nicoll RA (1989) Galanin blocks the slow cholinergic EPSP in CA1 pyramidal neurons from ventral hippocampus. Eur J Pharmacol 164(2):355–360

    Article  CAS  PubMed  Google Scholar 

  • Easton A, Douchamps V, Eacott M, Lever C (2012) A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 50:3156–3168

    Article  PubMed  PubMed Central  Google Scholar 

  • Eaton K, Sallee FR, Sah R (2007) Relevance of neuropeptide Y (NPY) in psychiatry. Curr Top Med Chem 7(17):1645–1659

    Article  CAS  PubMed  Google Scholar 

  • Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–474

    Article  CAS  PubMed  Google Scholar 

  • Elliott-Hunt CR, Marsh B, Bacon A, Pope R, Vanderplank P, Wynick D (2004) Galanin acts as a neuroprotective factor to the hippocampus. Proc Natl Acad Sci USA 101(14):5105–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmslie KS, Yoshikami D (1985) Effects of kynurenate on root potentials evoked by synaptic activity and amino acids in the frog spinal cord. Brain Res 330(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • España RA, Berridge CW (2006) Organization of noradrenergic efferents to arousal-related basal forebrain structures. J Comp Neurol 496(5):668–683

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  CAS  PubMed  Google Scholar 

  • Fadel J, Burk JA (2010) Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 1314:112–123

    Article  CAS  PubMed  Google Scholar 

  • Fadel J, Frederick-Duus D (2008) Orexin/hypocretin modulation of the basal forebrain cholinergic system: insights from in vivo microdialysis studies. Pharmacol Biochem Behav 90(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Fadel J, Moore H, Sarter M, Bruno JP (1996) Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J Neuroscience 16:6592–6600

    CAS  Google Scholar 

  • Fadel J, Sarter M, Bruno JP (2001) Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse 39:201–212

    Article  CAS  PubMed  Google Scholar 

  • Farr SA, Uezu K, Flood JF, Morley JE (1999) Septo-hippocampal drug interactions in post-trial memory processing. Brain Res 847(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Fisone G, Wu CF, Consolo S, Nordström O, Brynne N, Bartfai T, Melander T, Hökfelt T (1987) Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies. Proc Natl Acad Sci USA 84(20):7339–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flood JF, Baker ML, Hernandez EN, Morley JE (1989) Modulation of memory processing by neuropeptide Y varies with brain injection site. Brain Res 503(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Baker ML, Hernandez EN, Morley JE (1990) Modulation of memory retention by neuropeptide K. Brain Res 520(1–2):284–290

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Hernandez EN, Morley JE (1987) Modulation of memory processing by neuropeptide Y. Brain Res 421(1–2):280–290

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Morley JE (1989) Dissociation of the effects of neuropeptide Y on feeding and memory: evidence for pre- and postsynaptic mediation. Peptides 10(5):963–966

    Article  CAS  PubMed  Google Scholar 

  • Fort P, Khateb A, Pegna A, Muhlethaler M, Jones BE (1995) Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur J Neuroscience 7:1502–1511

    Article  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschy JM, Grzanna R (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 30:181–197

    Article  CAS  PubMed  Google Scholar 

  • Fühner H (1918) Untersuchunge über den Synergismus von Giften. Arch f Exper Pathol u Pharmacol 82:51–80

    Article  Google Scholar 

  • Galey D, Toumane A, Durkin T, Jaffard R (1989) In vivo modulation of septo-hippocampal cholinergic activity in mice: relationships with spatial reference and working memory performance. Behav Brain Res 32(2):163–172

    Article  CAS  PubMed  Google Scholar 

  • German DC, Manaye KF, White CL III, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676

    Article  CAS  PubMed  Google Scholar 

  • Givens BS, Olton DS, Crawley JN (1992) Galanin in the medial septal area impairs working memory. Brain Res 582(1):71–77

    Article  CAS  PubMed  Google Scholar 

  • Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  CAS  PubMed  Google Scholar 

  • Goldbach R, Allgaier C, Heimrich B, Jackisch R (1998) Postnatal development of muscarinic autoreceptors modulating acetylcholine release in the septohippocampal cholinergic system. I. Axon terminal region: hippocampus. Brain Res Dev Brain Res 108(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Cheng J, Zhong P, Qin L, Liu W, Yan Z (2014) Aβ selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer’s disease. J Neuroscience 34(41):13614–13628

    Article  CAS  Google Scholar 

  • Hammar CG, Hanin I, Holmstedt B et al (1968) Identification of acetylcholine in fresh rat brain by combined gas chromatography-mass spectrometry. Nature 220:915–917

    Article  CAS  PubMed  Google Scholar 

  • Harkany T, Abrahám I, Timmerman W, Laskay G, Tóth B, Sasvári M et al (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neuroscience 12:2735–2745

    Article  CAS  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, Sastre M, Galldiks N, Zimmer A, Hoehn M, Heiss WD, Klockgether T, Staufenbiel M (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein transgenic mice. J Neuroscience 26(5):1343–1354

    Article  CAS  Google Scholar 

  • Hökfelt T, Millhorn D, Seroogy K, Tsuruo Y, Ceccatelli S, Lindh B, Meister B, Melander T, Schalling M, Bartfai T et al (1987) Coexistence of peptides with classical neurotransmitters. Experientia 43(7):768–780

    Article  PubMed  Google Scholar 

  • Hunt R, Taveau R de M (1906) On the physiological action of cetain cholin derivatives and new methods for detecting cholin. Br Med J 3:1788–1791

    Google Scholar 

  • Huston JP, Hasenöhrl RU (1995) The role of neuropeptides in learning: focus on the neurokinin substance P. Behav Brain Res 66:117–127

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic–catecholamine, serotonin, and acetylcholine–neurons. Neuroscience 31:37–61

    Article  CAS  PubMed  Google Scholar 

  • Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272

    Article  CAS  PubMed  Google Scholar 

  • Khateb A, Fort P, Williams S, Serafin M, Muhlethaler M, Jones BE (1998) GABAergic input to cholinergic nucleus basalis neurons. Neuroscience 86:937–947

    Article  CAS  PubMed  Google Scholar 

  • Knox D, Sarter M, Berntson GG (2004) Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behav Neuroscience 118:1455–1459

    Article  CAS  Google Scholar 

  • Krebs JR (1990) Food-storing birds: adaptive specialization in brain and behaviour? Philos Trans R Soc Lond B Biol Sci 329(1253):153–160

    Article  CAS  PubMed  Google Scholar 

  • Krügel U, Bigl V, Eschrich K, Bigl M (2001) Deafferentation of the septo-hippocampal pathway in rats as a model of the metabolic events in Alzheimer’s disease. Int J Dev Neuroscience 19(3):263–277

    Article  Google Scholar 

  • Kurosawa M, Sato A, Sato Y (1989) Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci Lett 98:45–50

    Article  CAS  PubMed  Google Scholar 

  • Lamour Y, Dutar P, Jobert A (1984) Cortical projections of the nucleus of the diagonal band of Broca and of the substantia innominata in the rat: an anatomical study using the anterograde transport of a conjugate of wheat germ agglutinin and horseradish peroxidase. Neuroscience 12:395–408

    Article  CAS  PubMed  Google Scholar 

  • Leanza G, Nilsson OG, Wiley RG, Björklund A (1995) Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur J Neuroscience 7(2):329–343

    Article  CAS  Google Scholar 

  • Lelkes Z, Porkka-Heiskanen T, Stenberg D (2013) Cholinergic basal forebrain structures are involved in the mediation of the arousal effect of noradrenaline. J Sleep Res 22(6):721–726

    Article  PubMed  Google Scholar 

  • Levey AI (1993) Immunological localization of m1‐m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  CAS  PubMed  Google Scholar 

  • Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology 108:417–431

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zeng X, Hui Y et al (2015) Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 91:87–96

    Article  CAS  PubMed  Google Scholar 

  • Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch Ges Physiol 189:239–242

    Article  Google Scholar 

  • Loup F, Tribollet E, Dubois-Dauphin M, Dreifuss JJ (1991) Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 555(2):220–232

    Article  CAS  PubMed  Google Scholar 

  • Macht DI (1923) A pharmacodynamic analysis of the cerebral effects of atropin, homatropin, scopolamin and related drugs. J Pharmacol Exp Ther 22:35–48

    CAS  Google Scholar 

  • MacIntosh F.C., Oboring P. E. (1955) Release of acetylcholine from the intact cerebral cortex. Abstr 19th Int Physiol Congr 580–581

    Google Scholar 

  • Malin DH, Novy BJ, Lett-Brown AE, Plotner RE, May BT, Radulescu SJ, Crothers MK, Osgood LD, Lake JR (1992) Galanin attenuates retention of one-trial reward learning. Life Sci 50(13):939–944

    Article  CAS  PubMed  Google Scholar 

  • Marighetto A, Durkin T, Toumane A, Lebrun C, Jaffard R (1989) Septal alpha-noradrenergic antagonism in vivo blocks the testing-induced activation of septo-hippocampal cholinergic neurones and produces a concomitant deficit in working memory performance of mice. Pharmacol Biochem Behav 34(3):553–558

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M (2004a) The cholinergic lesion of Alzheimer’s Disease: pivotal factor or side show? Learn Mem 11:43–49

    Article  PubMed  Google Scholar 

  • Mesulam MM (2004b) The cholinergic innervation of the human cerebral cortex. Prog Brain Res 145:67–78

    Article  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Tsukikawa H, Inada K, Fujii M, Iwasaki K, Matsumoto Y, Abe K, Egawa T, Fujiwara M (2001) Ameliorative effect of vasopressin-(4–9) through vasopressin V(1A) receptor on scopolamine-induced impairments of rat spatial memory in the eight-arm radial maze. Eur J Pharmacol 427(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Molnár Z, Soós K, Lengyel I, Penke B, Szegedi V, Budai D (2004) Enhancement of NMDA responses by beta-amyloid peptides in the hippocampus in vivo. NeuroReport 15:1649–1652

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Stuckman S, Sarter M, Bruno JP (1995) Stimulation of cortical acetylcholine efflux by FG 7142 measured with repeated microdialysis sampling. Synapse 21:324–331

    Article  CAS  PubMed  Google Scholar 

  • Morón I, Ramírez-Lugo L, Ballesteros MA, Gutiérrez R, Miranda MI, Gallo M, Bermúdez-Rattoni F (2002) Differential effects of bicuculline and muscimol microinjections into the nucleus basalis magnocellularis in taste and place aversive memory formation. Behav Brain Res 134(1–2):425–431

    Article  PubMed  Google Scholar 

  • Mufson EJ, Cochran E, Benzing W, Kordower JH (1993) Galaninergic innervation of the cholinergic vertical limb of the diagonal band (Ch2) and bed nucleus of the stria terminalis in aging, Alzheimer’s disease and Down’s syndrome. Dementia 4(5):237–50

    CAS  PubMed  Google Scholar 

  • Neugroschl J, Wang S (2011) Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 78(4):596–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogasawara T, Itoh Y, Tamura M, Mushiroi T, Ukai Y, Kise M, Kimura K (1999) Involvement of cholinergic and GABAergic systems in the reversal of memory disruption by NS-105, a cognition enhancer. Pharmacol Biochem Behav 64(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Ogren SO, Hökfelt T, Kask K, Langel U, Bartfai T (1992) Evidence for a role of the neuropeptide galanin in spatial learning. Neuroscience 51(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Page KJ, Saha A, Everitt BJ (1993) Differential activation and survival of basal forebrain neurons following infusions of excitatory amino acids: studies with the immediate early gene c-fos. Exp Brain Res 93:412–422

    CAS  PubMed  Google Scholar 

  • Palmer AM, DeKosky ST (1993) Monoamine neurons in aging and Alzheimer’s disease. J Neural Transm Gen Sect 91:135–159

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Pérez-Sust P, Soriano E (2004) The GABAergic septohippocampal pathway in control and reeler mice: target specificity and termination onto Reelin-expressing interneurons. Mol Cell Neurosci 25(4):679–691

    Article  CAS  PubMed  Google Scholar 

  • Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG et al (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64(2):385–395

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Brown HD (2013) Muscarinic Cholinergic Receptor Agonists and Antagonists. Encyclopedia of Psychopharmacology. Springer, Berlin Heidelberg, pp 1–6

    Google Scholar 

  • Rangani RJ, Upadhya MA, Nakhate KT, Kokare DM, Subhedar NK (2012) Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer’s disease. Peptides 33(2):317–328

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DD, Clow K, Szerb JC (1994) Modification of neocortical acetylcholine release and electroencephalogram desynchronization due to brainstem stimulation by drugs applied to the basal forebrain. Neuroscience 60(3):665–677

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DD, Szerb IC, Jordan JL (1996) Differential effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-d-aspartate receptor antagonists applied to the basal forebrain on cortical acetylcholine release and electroencephalogram desynchronization. Neuroscience 72:419–427

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-da-Silva A, Hökfelt T (2000) Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides 34:256–271

    Article  CAS  PubMed  Google Scholar 

  • Robinson JK, Crawley JN (1993a) Intraseptal galanin potentiates scopolamine impairment of delayed nonmatching to sample. J Neurosci 13(12):5119–5125

    CAS  PubMed  Google Scholar 

  • Robinson JK, Crawley JN (1993b) Intraventricular galanin impairs delayed nonmatching-to sample performance in rats. Behav Neurosci 107(3):458–467

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J Comp Neurol 222:313–342

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Bartholini G (1982) Gamma-Aminobutyric acid (GABA) receptor stimulation. IV. Effect of progabide (SL 76002) and other GABAergic agents on acetylcholine turnover in rat brain areas. J Pharmacol Exp Ther 220:689–695

    CAS  PubMed  Google Scholar 

  • Semba K (2004) Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. Prog Brain Res 145:3–43

    CAS  PubMed  Google Scholar 

  • Sim JA, Griffith WH (1996) Muscarinic inhibition of glutamatergic transmissions onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur J Neurosci 8:880–891

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Mesulam MM (1999) Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 88:241–255

    Article  CAS  PubMed  Google Scholar 

  • Smith CG, Beninger RJ, Mallet PE, Jhamandas K, Boegman RJ (1994) Basal forebrain injections of the benzodiazepine partial inverse agonist FG 7142 enhance memory of rats in the double Y-maze. Brain Res 666:61–67

    Article  CAS  PubMed  Google Scholar 

  • Stanley EM, Fadel JR (2011) Aging-related alterations in orexin/hypocretin modulation of septohippocampal amino acid neurotransmission. Neuroscience 195:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stäubli U, Huston JP (1980) Facilitation of learning by post-trial injection of substance P into the medial septal nucleus. Behav Brain Res 1:245–255

    Article  PubMed  Google Scholar 

  • Stefani MR, Gold PE (1998) Intra-septal injections of glucose and glibenclamide attenuate galanin-induced spontaneous alternation performance deficits in the rat. Brain Res 813(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Sundström E, Archer T, Melander T, Hökfelt T (1988) Galanin impairs acquisition but not retrieval of spatial memory in rats studied in the Morris swim maze. Neurosci Lett 88(3):331–335

    Article  PubMed  Google Scholar 

  • Tanabe S, Shishido Y, Nakayama Y, Furushiro M, Hashimoto S, Terasaki T, Tsujimoto G, Yokokura T (1999) Effects of arginine-vasopressin fragment 4–9 on rodent cholinergic systems. Pharmacol Biochem Behav 63(4):549–553

    Article  CAS  PubMed  Google Scholar 

  • Tansey EM (1991) Chemical neurotransmission in the autonomic nervous system: Sir Henry Dale and acetylcholine. Clin Auton Res 1:63–72

    Article  CAS  PubMed  Google Scholar 

  • Torres EM, Perry TA, Blockland A, Wilkinson LS, Wiley RG, Lappi DA, Dunnet SB (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63(1):95–122

    Article  CAS  PubMed  Google Scholar 

  • Tóth A, Hajnik T, Záborszky L, Détári L (2007) Effect of basal forebrain neuropeptide Y administration on sleep and spontaneous behavior in freely moving rats. Brain Res Bull 72(4–6):293–301

    Article  PubMed  CAS  Google Scholar 

  • Ukai M, Miura M, Kameyama T (1995) Effects of galanin on passive avoidance response, elevated plus-maze learning, and spontaneous alternation performance in mice. Peptides 16(7):1283–1286

    Article  CAS  PubMed  Google Scholar 

  • Weiss JH, Yin HZ, Choi DW (1994) Basal forebrain cholinergic neurons are selectively vulnerable to AMPA/kainate receptor-mediated neurotoxicity. Neuroscience 60:659–664

    Article  CAS  PubMed  Google Scholar 

  • Wettstein JG, Earley B, Junien JL (1995) Central nervous system pharmacology of neuropeptide Y. Pharmacol Ther 65(3):397–414

    Article  CAS  PubMed  Google Scholar 

  • Winters BD, Dunnett SB (2004) Selective lesioning of the cholinergic septo-hippocampal pathway does not disrupt spatial short-term memory: a comparison with the effects of fimbria-fornix lesions. Behav Neurosci 118(3):546–562

    Article  PubMed  Google Scholar 

  • Yakel JL (2014) Functional distribution and regulation of neuronal nicotinic ach receptors in the mammalian brain. In: Lester RAJ (ed) Nicotinic Receptors. Springer, New York, pp 93–114

    Google Scholar 

  • Yang C, Franciosi S, Brown RE (2013) Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 4:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Záborszky L, Cullinan WE, Braun A (1991) Afferents to basal forebrain cholinergic projection neurons: an update. Adv Exp Med Biol 295:43–100

    Article  PubMed  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    Article  CAS  PubMed  Google Scholar 

  • Záborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367

    Article  PubMed  Google Scholar 

  • Zaborszky L., Duque A., Gielow M., et al (2015) Organization of the basal forebrain cholinergic projection system: specific or diffuse?. Rat Nerv. Syst. (Fourth Edition)—Chapter 19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M Boccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blake, M.G., Boccia, M.M. (2016). Basal Forebrain Cholinergic System and Memory. In: Clark, R.E., Martin, S. (eds) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, vol 37. Springer, Cham. https://doi.org/10.1007/7854_2016_467

Download citation

Publish with us

Policies and ethics