Skip to main content

Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression

  • Chapter
  • First Online:
Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dantzer R, O’Connor JC, Freund GC, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henry CJ, Huang Y, Wynne A et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior and anhedonia. J Neuroinflammation 5:15

    Google Scholar 

  4. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an Inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24:558–563

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Mello C, Riazi K, Le T et al (2013) P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 33(37):14878–14888

    Google Scholar 

  6. Neuman M, Angulo P, Malkiewicz I et al (2002) Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 17(2):196–202

    Article  CAS  PubMed  Google Scholar 

  7. Roussaki-Schulze AV, Kouskoukis C, Petinaki E et al (2005) Evaluation of cytokine serum levels in patients with plaque-type psoriasis. Int J Clin Pharmacol Res 25(4):169–173

    CAS  PubMed  Google Scholar 

  8. Louis E, Belaiche J, van-Kemseke C et al (1997) A high serum concentration of interleukin-6 is predictive of relapse in quiescent Crohn’s disease. Eur J Gastroenterol Hepatol 9(10):939–944

    Google Scholar 

  9. Lasselin L, Laye S, Dexpert S et al (2012) Fatigue symptoms relate to systemic inflammation in patients with type 2 diabetes. Brain Behav Immun 26(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  10. Riccio A, Postiglione L, Sabatini P et al (2012) Similar serum levels of IL-6 and its soluble receptors in patients with HCV-related arthritis and rheumatoid arthritis: a pilot study. Int J Immunopathol Pharmacol 25(1):281–285

    Article  CAS  PubMed  Google Scholar 

  11. Strand V, Khanna D (2010) The impact of rheumatoid arthritis and treatment on patients’ lives. Clin Exp Rheumatol 28(Suppl 59):S32–S40

    PubMed  Google Scholar 

  12. Ban A, Inaba M, Furumitsu Y et al (2010) Time-course of health status in patients with rheumatoid arthritis during the first year of treatment with infliximab. Biomed Pharmacother 64(2):107–112

    Article  CAS  PubMed  Google Scholar 

  13. Hess A, Axmann R, Rech J et al (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A 108(9):3731–3736

    Google Scholar 

  14. Raison CL, Rutherford RE, Woolwine BJ et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mells GF, Floyd JAB, Morley KI et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43(4):329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clerici M, Arosio B, Mundo E et al (2009) Cytokine polymorphisms in the pathophysiology of mood disorders. CNS Spectr 14(8):419–425

    Article  PubMed  Google Scholar 

  17. Aouizerat BE, Dodd M, Lee K et al (2009) Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biol Res Nurs 11(1):27–41

    Article  CAS  PubMed  Google Scholar 

  18. Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 18(22):9471–9479

    CAS  PubMed  Google Scholar 

  19. Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DM (1993) Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32(6):581–587

    Article  CAS  PubMed  Google Scholar 

  20. Harrison NA, Brydon L, Walker C et al (2009) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66(5):415–422

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bluthe RM, Michaud B, Kelley KW, Dantzer R (1996) Vagotomy blocks behavioral effects of interleukin-1 injected via the intraperitoneal route but not via other systemic routes. Neuroreport 7:2823–2827

    Article  CAS  PubMed  Google Scholar 

  22. Nadeau S, Rivest S (1999) Effects of circulating tumor necrosis factor-α on the neuronal activity and expression of the genes encoding the tumor necrosis factor receptors (p55 and p75) in the rat brain: a view from the blood-brain barrier. Neuroscience 93(4):1449–1464

    Article  CAS  PubMed  Google Scholar 

  23. Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223(1):22–38

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi Y (2010) The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol 88(6):1157–1162

    Article  CAS  PubMed  Google Scholar 

  25. Peng Y-L, Liu Y-N, Liu L, Wang X, Jiang C-L, Wang Y-X (2012) Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflammation 9:75

    Google Scholar 

  26. Lacroix S, Rivest S (1998) Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain. J Neurochem 70:452–466

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Rivest S (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 11(8):2651–2668

    Article  CAS  PubMed  Google Scholar 

  28. de-Paiva VN, Lima SN, Fernandes MM, Soncini R, Andrade CA, Giusti-Paiva A (2010) Prostaglandins mediate depressive-like behavior induced by endotoxin in mice. Behav Brain Res 215(1):146–151

    Google Scholar 

  29. Vallieres L, Rivest S (1997) Regulation of the genes encoding interleukin-6, its receptor and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J Neurochem 69:1668–1683

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen K, D’Mello C, Le T, Urbanski S, Swain MG (2012) Regulatory T cells suppress sickness behaviour development without altering liver injury in cholestatic mice. J Hepatol 56(3):626–631

    Article  CAS  PubMed  Google Scholar 

  31. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  CAS  PubMed  Google Scholar 

  32. Thibeault I, Laflamme N, Rivest S (2001) Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434(4):461–477

    Article  CAS  PubMed  Google Scholar 

  33. Schulz M, Engelhardt B (2005) The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2:8

    Google Scholar 

  34. D’Mello C, Le T, Swain M (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102

    Article  PubMed  Google Scholar 

  35. Gordon S, Pluddemann A, Estrada FM (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerfoot SM, D’Mello C, Nguyen H et al (2006) TNF-α secreting monocytes are recruited into the brains of cholestatic mice. Hepatology 43:154–162

    Article  PubMed  Google Scholar 

  37. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  38. Fabene PF, Navarro MG, Martinello M et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14(12):1377–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Putzki N, Yaldizli O, Tettenborn B, Diener HC (2009) Multiple sclerosis associated fatigue during natalizumab treatment. J Neurol Sci 285(1):109–113

    Google Scholar 

  40. Penner I-K, Sivertsdotter EC, Celius EG et al (2015) Improvement in fatigue during natalizumab treatment is linked to improvement in depression and day-time sleepiness. Front Neurol 6:18

    PubMed  PubMed Central  Google Scholar 

  41. Targan SR, Feagan BG, Fedorak RN et al (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE trial. Gastroenterology 132:1672–1683

    Article  CAS  PubMed  Google Scholar 

  42. Bravata I, Allocca M, Fiorino G, Danese S (2015) Integrins and adhesion molecules as targets to treat inflammatory bowel disease. Curr Opin Pharmacol 25:67–71

    Article  CAS  PubMed  Google Scholar 

  43. Chandar AK, Singh S, Murad MH, Peyrin-Biroulet L, Loftus EV (2015) Efficacy and safety of natalizumab and vedolizumab for the management of Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis 21(7):1695–1708

    Article  PubMed  Google Scholar 

  44. Pan W, Zadina JE, Harlan RE, Weber JT, Banks WA, Kastin AJ (1997) Tumor necrosis factor-α; a neuromodulator in the CNS. Neurosci Biobehav Rev 21(5):603–613

    Article  CAS  PubMed  Google Scholar 

  45. Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33(34):13820–13833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng X, Ma S, Kang A et al (2016) Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice. Sci Rep 6:19406

    Google Scholar 

  47. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59

    Google Scholar 

  48. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 105(44):17151–17156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corona AW, Huang Y, O’Connor JC et al (2010) Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation 7:93

    Google Scholar 

  50. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–657

    Article  CAS  PubMed  Google Scholar 

  51. Newton JL, Hollingsworth KG, Taylor R et al (2008) Cognitive impairment in primary biliary cirrhosis: symptom impact and potential etiology. Hepatology 48:541–549

    Article  PubMed  Google Scholar 

  52. Forton DM, Hamilton G, Allsop JM et al (2008) Cerebral immune activation in chronic hepatitis C infection: a magnetic resonance spectroscopy study. J Hepatol 49:316–322

    Article  CAS  PubMed  Google Scholar 

  53. Grover VPB, Pavese N, Koh S-B et al (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:e89–e96

    Article  CAS  PubMed  Google Scholar 

  54. Colasanti A, Giannetti P, Wall MB et al (2015) Hippocampal neuroinflammation, functional connectivity and depressive symptoms in multiple sclerosis. Biol Psychiatry

    Google Scholar 

  55. Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laye S, Gheusi G, Cremona S et al (2000) Endogenous brain IL-1 mediates LPS induced anorexia and hypothalamic cytokine expression. Am J Physiol Regul Integr Comp Physiol 279:R93–R98

    CAS  PubMed  Google Scholar 

  57. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haroon E, Fleischer CC, Felger JC et al (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. doi:10.1038/mp.2015.206

    Google Scholar 

  59. Guilarte TR (2013) Manganese toxicity: new perspectives from behavioral, neuroimaging and neuropathological studies in humans and non-human primates. Front Aging Neurosci 5:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  61. Kraus MR, Schafer A, Schottker K et al (2008) Therapy of interferon-induced depression in chronic hepatitis C with citalopram: a randomised, double-blind, placebo-controlled study. Gut 57:531–536

    Article  CAS  PubMed  Google Scholar 

  62. Cavanagh J, Paterson C, McLean J et al (2010) Tumour necrosis factor blockade mediates altered serotonin transporter availability in rheumatoid arthritis: a clinical, proof-of-concept study. Ann Rheum Dis 69(6):1251–1252

    Article  PubMed  Google Scholar 

  63. O’Connor JC, Andre C, Wang Y et al (2009) Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to Bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209

    Article  PubMed  PubMed Central  Google Scholar 

  64. Raison CL, Dantzer R, Kelley KW et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    Article  CAS  PubMed  Google Scholar 

  65. Steiner J, Walter M, Gos T et al (2011) Severe depression is associated with increased microglial quinolic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission. J Neuroinflammation 8:94

    Google Scholar 

  66. Hannestad J, Subramanyam K, DellaGioia N et al (2012) Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans. J Nucl Med 53(4):601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression Anxiety 12(Suppl 1):2–19

    Google Scholar 

  68. Burak KW, Le T, Swain MG (2001) Increased midbrain 5-HT1A receptor number and responsiveness in cholestatic rats. Brain Res 892:376–379

    Article  CAS  PubMed  Google Scholar 

  69. Hirvonen J, Karlsson H, Kajander J et al (2008) Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in vivo-imaging study using PET and [cabonyl-11C]WAY-100635. Int J Neuropsychopharmacol 11:465–476

    Google Scholar 

  70. Nguyen H, Wang H, Le T, Ho W, Sharkey K, Swain MG (2007) Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5HT3 receptor antagonist mediated improvement in fatigue like behavior in cholestatic rats. Neurogastroenterol Motil 20:228–235

    Article  PubMed  Google Scholar 

  71. Gupta D, Thangaraj D, Radhakrishnan M (2016) A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: modulation of serotonergic system. Behav Brain Res 297:41–50

    Article  CAS  PubMed  Google Scholar 

  72. Weissenborn K, Ennen JC, Bokemeyer M et al (2006) Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment. Gut 55:1624–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Piche T, Vanbiervliet G, Cherikh F et al (2005) Effect of ondansetron, a 5-HT3 receptor antagonist, on fatigue in chronic hepatitis C: a randomised, double-blind, placebo controlled study. Gut 54:1169–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states. Mol Psychiatry 7(3):254–275

    Article  CAS  PubMed  Google Scholar 

  75. Swain MG, Maric M (1995) Defective corticotropin-releasing hormone mediated neuroendocrine and behavioral responses in cholestatic rats: implications for cholestatic liver disease – related sickness behaviors. Hepatology 22:1560–1564

    CAS  PubMed  Google Scholar 

  76. Burak KW, Le T, Swain MG (2002) Increased sensitivity to the locomotor-activating effects of corticotropin-releasing hormone in cholestatic rats. Gastroenterology 122:681–688

    Article  CAS  PubMed  Google Scholar 

  77. Swain MG, Maric M (1996) Impaired stress and interleukin -1β induced hypothalamic expression of the neuronal activation marker Fos in cholestatic rats. Hepatology 24:914–918

    CAS  PubMed  Google Scholar 

  78. Komuro H, Sato N, Sasaki A et al (2016) Corticotropin-releasing hormone receptor 2 gene variants in irritable bowel syndrome. PLoS One 11(1):e0147817

    Google Scholar 

  79. Ishitobi Y, Nakayama S, Yamaguchi K et al (2012) Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 159B(4):429–436

    Google Scholar 

  80. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4(11):430–435

    Article  CAS  PubMed  Google Scholar 

  81. Honda K, Littman DR (2012) The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quigley EMM, Stanton C, Murphy EF (2013) The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 58:1020–1027

    Article  PubMed  Google Scholar 

  83. D’Mello C, Swain MG (2014) Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 35:9–20

    Article  PubMed  Google Scholar 

  84. Jeffery IB, O’Toole PW, Ohman L et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006

    Article  PubMed  Google Scholar 

  85. Jiang H, Ling Z, Zhang Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  86. Sherwin E, Rea K, Dinan TG, Cryan JF (2016) A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 32(2):96–102

    Article  CAS  PubMed  Google Scholar 

  87. Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liang S, Wang T, Hu X et al (2015) Administration of Lactobacillus Helveticus NS8 improves behavioral, cognitive and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    Article  CAS  PubMed  Google Scholar 

  89. Martinotti G, Pettorruso M, Berardis DD et al (2016) Agomelatine increases BDNF serum levels in depressed patients in correlation with the improvement of depressive symptoms. Int J Neuropsychopharmacol 19(5)

    Google Scholar 

  90. Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1):56

    Article  PubMed Central  Google Scholar 

  91. Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673

    Google Scholar 

  92. Luo J, Wang T, Liang S, Hu X, Li W, Jin F (2014) Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 57(3):327–335

    Article  PubMed  Google Scholar 

  93. Bercik P, Park AJ, Sinclair D et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 23(12):1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van der Kleij H, O’Mahony C, Shanahan F, O’Mahony L, Bienenstock J (2008) Protective effects of Lactobacillus reuteri and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol 295(4):R1131–R1137

    Article  PubMed  Google Scholar 

  96. Gitter AH, Bendfeldt K, Schulzke J-D, Fromm M (2000) Leaks in the epithelial barrier caused by spontaneous and TNF-α − induced single-cell apoptosis. FASEB J 14(12):1749–1753

    Google Scholar 

  97. Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263)

    Google Scholar 

  98. Keri S, Szabo C, Kelemen O (2014) Expression of Toll-like receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav Immun 40:235–243

    Article  CAS  PubMed  Google Scholar 

  99. Messaoudi M, Lalonde R, Violle N et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    Article  CAS  PubMed  Google Scholar 

  100. Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401.e1394

    Google Scholar 

  101. Arseneault-Bréard J, Rondeau I, Gilbert K et al (2012) Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 107(12):1793–1799

    Article  PubMed  Google Scholar 

  102. Davari S, Talaei SA, Alaei H, Salami M (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240:287–296

    Article  CAS  PubMed  Google Scholar 

  103. Rao AV, Bested AC, Beaulne TM et al (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1(6):1–6

    Google Scholar 

  104. Mandel DR, Eichas K, Holmes J (2010) Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med 10:1

    Google Scholar 

  105. Pineda Mde L, Thompson SF, Summers K, de-Leon F, Pope J, Reid G (2011) A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit 17(6):CR347–CR354

    Google Scholar 

  106. O’Mahony L, McCarthy J, Kelly P et al (2005) Lactobacillus and Bifidobacterium in Irritable Bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128(3):541–551

    Article  PubMed  Google Scholar 

  107. Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14(7):646–653

    Article  CAS  PubMed  Google Scholar 

  108. Mittal VV, Sharma BC, Sharma P, Sarin SK (2011) A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol 23:725–732

    Article  CAS  PubMed  Google Scholar 

  109. D’Mello C, Ronaghan N, Zaheer R et al (2015) Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci 35(30):10821–10830

    Article  PubMed  Google Scholar 

  110. Groeger D, O’Mahony L, Murphy EF et al (2013) Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 4(4):325–339

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif S-K, Asshari-Jafarabadi M, Zavvari S (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30(4):430–435

    Google Scholar 

  112. Loguercio C, Federico A, Tuccillo C et al (2005) Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol 39(6):540–543

    Article  PubMed  Google Scholar 

  113. Dhiman RK, Rana B, Agrawal S et al (2014) Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized controlled trial. Gastroenterology 147(6):1327–1337

    Google Scholar 

  114. Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9(10):599–608

    Article  CAS  PubMed  Google Scholar 

  115. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:10.3402/mehd.v3426.26191

  116. Harris K, Kassis A, Major G, Chou CJ (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012:879151

    PubMed  PubMed Central  Google Scholar 

  117. Mao L, Franke J (2015) Symbiosis, dysbiosis, and rebiosis-the value of metaproteomics in human microbiome monitoring. Proteomics 15(5-6):1142–1151

    Article  CAS  PubMed  Google Scholar 

  118. Sanaie S, Ebrahimi-Mameghani M, Hamishehkar H, Mojtahedzadeh M, Mahmoodpoor A (2014) Effect of a multispecies probiotic on inflammatory markers in critically ill patients: a randomized, double-blind, placebo-controlled trial. J Res Med Sci 19(9):827–833

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Mello, C., Swain, M.G. (2016). Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_37

Download citation

Publish with us

Policies and ethics