Skip to main content

Does Diet Matter? The Use of Polyunsaturated Fatty Acids (PUFAs) and Other Dietary Supplements in Inflammation-Associated Depression

  • Chapter
  • First Online:
Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Abstract

An increasingly pertinent issue in psychiatry in recent years is that of the limitations of conventional antidepressants, which are not effective in a large number of patients with major depressive disorder (MDD). Coupled with emerging hypotheses about the role of inflammation in depression, it would appear that it is time to look for alternative treatments for these symptoms.

This review will examine an emerging area in psychiatry, that of dietary supplements and the diet in general to treat depressive symptoms, and inflammation in depression. In particular, polyunsaturated fatty acids (PUFAs), probiotics and folic acid are three supplements that demonstrate the ability to target inflammation and other underlying systems in depression. While there is a definite need for more research in all these supplements to determine true efficacy, dosage and target populations, they can be used as mono- or adjunctive therapies to good effect, and show superior safety profiles when compared with more traditional alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rush J, Trivedi M, Wisniewski S, Nierenberg A, Stewart J, Warden D, Niederehe G, Thase M, Lavori P, Lebowitz B, Mcgrath P, Rosenbaum J, Sackeim H, Kupfer D, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several: a STAR*D report. Am J Psychiatry 163:1905–1917

    Article  PubMed  Google Scholar 

  2. Pariante CM (2016) Neuroscience, mental health and the immune system: overcoming the brain-mind-body trichotomy. Epidemiol Psychiatr Sci 25:25101–25105

    Article  Google Scholar 

  3. Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306

    Article  CAS  PubMed  Google Scholar 

  4. Dantzer R, O’connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    Article  CAS  PubMed  Google Scholar 

  6. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller AH, Raison CL (2015) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    Article  CAS  Google Scholar 

  8. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729

    Article  CAS  PubMed  Google Scholar 

  9. Baumeister D, Russell A, Pariante CM, Mondelli V (2014) Inflammatory biomarker profiles of mental disorders and their relation to clinical, social and lifestyle factors. Soc Psychiatry Psychiatr Epidemiol 49:841–849

    Article  PubMed  Google Scholar 

  10. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162

    Article  CAS  PubMed  Google Scholar 

  11. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217

    Article  CAS  PubMed  Google Scholar 

  12. Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824

    Article  CAS  PubMed  Google Scholar 

  13. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234

    Article  CAS  PubMed  Google Scholar 

  14. Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:445–450

    Article  CAS  PubMed  Google Scholar 

  15. O’brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331

    Article  PubMed  Google Scholar 

  16. Fond G, Hamdani N, Kapczinski F, Boukouaci W, Drancourt N, Dargel A, Oliveira J, Le Guen E, Marlinge E, Tamouza R, Leboyer M (2014) Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand 129:163–179

    Article  CAS  PubMed  Google Scholar 

  17. Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519–533

    Article  CAS  PubMed  Google Scholar 

  18. Muller N (2013) The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr Danub 25:292–298

    PubMed  Google Scholar 

  19. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  CAS  PubMed  Google Scholar 

  20. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, Craig IW, Anacker C, Zunsztain PA, Mcguffin P, Pariante CM (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38:377–385

    Article  CAS  PubMed  Google Scholar 

  21. Magnano M, Pertile R, Calixto J, Santos A, Rodrigues A (2012) The gut-brain axis: effect of probiotics on anxiety. Acta Medica Mediterranea 28:231

    Google Scholar 

  22. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  PubMed  Google Scholar 

  23. Logan AC, Katzman M (2005) Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses 64:533–538

    Article  PubMed  Google Scholar 

  24. Cicero AF, Ertek S, Borghi C (2009) Omega-3 polyunsaturated fatty acids: their potential role in blood pressure prevention and management. Curr Vasc Pharmacol 7:330–337

    Article  CAS  PubMed  Google Scholar 

  25. Diem SJ, Blackwell TL, Stone KL, Yaffe K, Haney EM, Bliziotes MM, Ensrud KE (2007) Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med 167:1240–1245

    Article  PubMed  Google Scholar 

  26. Haney EM, Chan BK, Diem SJ, Ensrud KE, Cauley JA, Barrett-Connor E, Orwoll E, Bliziotes MM, Osteoporotic Fractures in Men Study Group (2007) Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 167:1246–1251

    Google Scholar 

  27. Swart K, Van Schoor N, Lips P (2013) Vitamin B12, folic acid, and bone. Curr Osteoporos Rep 11:213–218

    Article  PubMed  Google Scholar 

  28. Burr G, Burr M (1929) A new deficiency disease produced by rigid exclusion of fat from the diet. J Biol Chem 82:345–367

    CAS  Google Scholar 

  29. Mcnamara RK (2015) Mitigation of inflammation-induced mood dysregulation by long-chain omega-3 fatty acids. J Am Coll Nutr 34(Suppl 1):48–55

    Article  PubMed  PubMed Central  Google Scholar 

  30. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439

    Article  CAS  PubMed  Google Scholar 

  31. Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795

    Article  CAS  PubMed  Google Scholar 

  32. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heinrichs SC (2010) Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 54:447–456

    Article  CAS  PubMed  Google Scholar 

  34. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233:674–688

    Article  CAS  Google Scholar 

  35. Hibbeln J (1998) Fish consumption and major depression. Lancet 351:1213

    Article  CAS  PubMed  Google Scholar 

  36. Rienks J, Dobson AJ, Mishra GD (2013) Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: results from a large community-based prospective study. Eur J Clin Nutr 67:75–82

    Article  CAS  PubMed  Google Scholar 

  37. Yoshikawa E, Nishi D, Matsuoka Y (2015) Fish consumption and resilience to depression in Japanese company workers: a cross-sectional study. Lipids Health Dis 14:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Park Y, Kim M, Baek D, Kim S (2012) Erythrocyte n-3 polyunsaturated fatty acid and seafood intake decrease the risk of depression: case-control study in Korea. Ann Nutr Metab 61:25–31

    Article  CAS  PubMed  Google Scholar 

  39. Lucas M, Mirzaei F, O’reilly EJ, Pan A, Willett WC, Kawachi I, Koenen K, Ascherio A (2011) Dietary intake of n-3 and n-6 fatty acids and the risk of clinical depression in women: a 10-y prospective follow-up study. Am J Clin Nutr 93:1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hakkarainen R, Partonen T, Haukka J, Virtamo J, Albanes D, Lonnqvist J (2004) Is low dietary intake of omega-3 fatty acids associated with depression? Am J Psychiatry 161:567–569

    Article  PubMed  Google Scholar 

  41. Chang J, Chang S, Yang H, Palani M, Chen C, Su K (2015) Polyunsaturated fatty acids (PUFAs) levels in patients with cardiovascular diseases (CVDs) with and without depression. Brain Behav Immun 44:28–31

    Article  CAS  PubMed  Google Scholar 

  42. Deacon G, Kettle C, Hayes D, Dennis C, Tucci J (2015) Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit Rev Food Sci Nutr. http://www.ncbi.nlm.nih.gov/pubmed/25830700. EPub ahead of print. doi:10.1080/10408398.2013.876959

    Google Scholar 

  43. Sontrop J, Campbell MK (2006) Omega-3 polyunsaturated fatty acids and depression: a review of the evidence and a methodological critique. Prev Med 42:4–13

    Article  CAS  PubMed  Google Scholar 

  44. Tsuboi H, Sakakibarac H, Tatsumid A, Yamakawa-Kobayashie K, Kanekob H, Mataunagab M, Shimoic K (2014) The serum levels of n-3 fatty acids and IL-6 were independently associated with depressive symptoms in a female population. Brain Behav Immun 40:29

    Article  Google Scholar 

  45. Lotrich FE, Sears B, Mcnamara RK (2013) Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: relationship with interleukin-6. Brain Behav Immun 31:48–53

    Article  CAS  PubMed  Google Scholar 

  46. Su KP, Huang SY, Peng CY, Lai HC, Huang CL, Chen YC, Aitchison KJ, Pariante CM (2010) Phospholipase A2 and cyclooxygenase 2 genes influence the risk of interferon-alpha-induced depression by regulating polyunsaturated fatty acids levels. Biol Psychiatry 67:550–557

    Article  CAS  PubMed  Google Scholar 

  47. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, Marangell LB (1999) Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 56:407–412

    Article  CAS  PubMed  Google Scholar 

  48. Nemets B, Stahl Z, Belmaker RH (2002) Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 159:477–479

    Article  PubMed  Google Scholar 

  49. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 9, e96905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lin PY, Su KP (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry 68:1056–1061

    Article  CAS  PubMed  Google Scholar 

  51. Sublette ME, Ellis SP, Geant AL, Mann JJ (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72:1577–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su KP, Huang SY, Chiu TH, Huang KC, Huang CL, Chang HC, Pariante CM (2008) Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 69:644–651

    Article  CAS  PubMed  Google Scholar 

  53. Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163:1098–1100

    Article  PubMed  Google Scholar 

  54. Song C, Shieh C, Wu Y, Kalueff A, Gaikwad S, Su K (2016) The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 4:41–54

    Article  CAS  Google Scholar 

  55. Puri BK, Counsell SJ, Hamilton G, Richardson AJ, Horrobin DF (2001) Eicosapentaenoic acid in treatment-resistant depression associated with symptom remission, structural brain changes and reduced neuronal phospholipid turnover. Int J Clin Pract 55:560–563

    CAS  PubMed  Google Scholar 

  56. Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542

    Article  CAS  PubMed  Google Scholar 

  57. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, Kimber AC, Grew JP, Farrell L, Stannard J, Napper FL, Sala-Vila A, West AL, Mathers JC, Packard C, Williams CM, Calder PC, Minihane AM (2008) Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr 88:618–629

    CAS  PubMed  Google Scholar 

  58. Colangelo LA, He K, Whooley MA, Daviglus ML, Liu K (2009) Higher dietary intake of long-chain omega-3 polyunsaturated fatty acids is inversely associated with depressive symptoms in women. Nutrition 25:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lesperance F, Frasure-Smith N, St-Andre E, Turecki G, Lesperance P, Wisniewski SR (2011) The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry 72:1054–1062

    Article  CAS  PubMed  Google Scholar 

  60. Delarue J, Matzinger O, Binnert C, Schneiter P, Chiolero R, Tappy L (2003) Fish oil prevents the adrenal activation elicited by mental stress in healthy men. Diabetes Metab 29:289–295

    Article  CAS  PubMed  Google Scholar 

  61. Song C, Zhang XY, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29:14–22

    Article  PubMed  CAS  Google Scholar 

  62. Su K, Lai H, Yang H, Su W, Peng C, Chang J, Chang H, Pariante C (2013) Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: results from a randomized, controlled trial. Biol Psychiatry 76:559–566

    Article  CAS  Google Scholar 

  63. Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, Cardoos A, Walker R, Mischoulon D (2016) Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry 21:71–79

    Article  CAS  PubMed  Google Scholar 

  64. Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R (2007) Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom Med 69:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shelton RC, Miller AH (2011) Inflammation in depression: is adiposity a cause? Dialogues Clin Neurosci 13:41–53

    PubMed  Google Scholar 

  66. Holub BJ (2002) Clinical nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ 166:608–615

    PubMed  PubMed Central  Google Scholar 

  67. Bloch MH, Hannestad J (2012) Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 17:1272–1282

    Article  CAS  PubMed  Google Scholar 

  68. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726

    Article  CAS  PubMed  Google Scholar 

  69. Schousboe A, Waagepetersen HS (2007) GABA: homeostatic and pharmacological aspects. Prog Brain Res 160:9–19

    Article  CAS  PubMed  Google Scholar 

  70. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  71. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33:574–581

    Article  CAS  PubMed  Google Scholar 

  72. Evrensel A, Ceylan M (2015) The gut-brain axis: the missing link in depression. Clin Psychopharmacol Neurosci 13:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  73. Clarke G, Quigley EM, Cryan JF, Dinan TG (2009) Irritable bowel syndrome: towards biomarker identification. Trends Mol Med 15:478–489

    Article  CAS  PubMed  Google Scholar 

  74. O’mahony L, Mccarthy J, Kelly P, Hurley G, Luo F, Chen K, O’sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551

    Article  PubMed  Google Scholar 

  75. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  76. Asemi Z, Jazayeri S, Najafi M, Samimi M, Mofid V, Shidfar F, Shakeri H, Esmaillzadeh A (2012) Effect of daily consumption of probiotic yogurt on oxidative stress in pregnant women: a randomized controlled clinical trial. Ann Nutr Metab 60:62–68

    Article  CAS  PubMed  Google Scholar 

  77. Asemi Z, Zare Z, Shakeri H, Sabihi S, Esmaillzadeh A (2013) Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab 63:1–9

    Article  CAS  PubMed  Google Scholar 

  78. Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361

    Article  CAS  PubMed  Google Scholar 

  79. Mohammadi A, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S (2015) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 15:115–120

    Google Scholar 

  80. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, Memarzadeh M, Asemi Z, Esmaillzadeh A (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32:315–320

    Article  CAS  PubMed  Google Scholar 

  81. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764

    Article  CAS  PubMed  Google Scholar 

  82. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37:1885–1895

    Article  CAS  PubMed  Google Scholar 

  83. Bailey M, Coe C (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155

    Article  CAS  PubMed  Google Scholar 

  84. Neish A (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80

    Article  PubMed  Google Scholar 

  85. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174

    Article  PubMed  Google Scholar 

  86. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan J, Dinan T (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  PubMed  Google Scholar 

  87. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16

    Article  PubMed  Google Scholar 

  88. Maes M, Kenis G, Kubera M, De Baets M, Steinbusch H, Bosmans E (2005) The negative immunoregulatory effects of fluoxetine in relation to the cAMP-dependent PKA pathway. Int Immunopharmacol 5:609–618

    Article  CAS  PubMed  Google Scholar 

  89. Smits HH, Engering A, Van Der Kleij D, De Jong EC, Schipper K, Van Capel TM, Zaat BA, Yazdanbakhsh M, Wierenga EA, Van Kooyk Y, Kapsenberg ML (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115:1260–1267

    Article  CAS  PubMed  Google Scholar 

  90. Wall R, Ross RP, Shanahan F, O’mahony L, Kiely B, Quigley E, Dinan TG, Fitzgerald G, Stanton C (2010) Impact of administered bifidobacterium on murine host fatty acid composition. Lipids 45:429–436

    Article  CAS  PubMed  Google Scholar 

  91. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(255–64), e119

    Google Scholar 

  92. Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products-a review. Crit Rev Food Sci Nutr 53:641–658

    Article  CAS  PubMed  Google Scholar 

  93. Weinstein SJ, Hartman TJ, Stolzenberg-Solomon R, Pietinen P, Barrett MJ, Taylor PR, Virtamo J, Albanes D (2003) Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine. Cancer Epidemiol Biomarkers Prev 12:1271–1272

    CAS  PubMed  Google Scholar 

  94. Botez MI, Young SN, Bachevalier J, Gauthier S (1979) Folate deficiency and decreased brain 5-hydroxytryptamine synthesis in man and rat. Nature 278:182–183

    Article  CAS  PubMed  Google Scholar 

  95. Gaweesh S, Ewies A (2010) Folic acid supplementation cures hot flushes in postmenopausal women. Med Hypotheses 74:286–288

    Article  CAS  PubMed  Google Scholar 

  96. Gilbody S, Lewis S, Lightfoot T (2007) Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 165:1–13

    Article  PubMed  Google Scholar 

  97. Manzoor M, Runcie J (1976) Folate-responsive neuropathy: report of 10 cases. Br Med J 1:1176–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fava M, Borus JS, Alpert JE, Nierenberg AA, Rosenbaum JF, Bottiglieri T (1997) Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry 154:426–428

    Article  CAS  PubMed  Google Scholar 

  99. Alpert M, Silva RR, Pouget ER (2003) Prediction of treatment response in geriatric depression from baseline folate level: interaction with an SSRI or a tricyclic antidepressant. J Clin Psychopharmacol 23:309–313

    CAS  PubMed  Google Scholar 

  100. Botez MI, Young SN, Bachevalier J, Gauthier S (1982) Effect of folic acid and vitamin B12 deficiencies on 5-hydroxyindoleacetic acid in human cerebrospinal fluid. Ann Neurol 12:479–484

    Article  CAS  PubMed  Google Scholar 

  101. Lucock MD, Green M, Levene MI (1995) Methylfolate modulates potassium evoked neuro-secretion: evidence for a role at the pteridine cofactor level of tyrosine 3-hydroxylase. Neurochem Res 20:727–736

    Article  CAS  PubMed  Google Scholar 

  102. Bottiglieri T, Laundy M, Martin R, Carney MW, Nissenbaum H, Toone BK, Johnson AL, Reynolds EH (1984) S-adenosylmethionine influences monoamine metabolism. Lancet 2:224

    Article  CAS  PubMed  Google Scholar 

  103. Taylor MJ, Carney SM, Goodwin GM, Geddes JR (2004) Folate for depressive disorders: systematic review and meta-analysis of randomized controlled trials. J Psychopharmacol 18:251–256

    Article  CAS  PubMed  Google Scholar 

  104. Nagele P, Meissner K, Francis A, Fodinger M, Saccone NL (2011) Genetic and environmental determinants of plasma total homocysteine levels: impact of population-wide folate fortification. Pharmacogenet Genomics 21:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  106. Wang G, Dai J, Mao J, Zeng X, Yang X, Wang X (2005) Folic acid reverses hyper-responsiveness of LPS-induced chemokine secretion from monocytes in patients with hyperhomocysteinemia. Atherosclerosis 179:395–402

    Article  CAS  PubMed  Google Scholar 

  107. Kolb AF, Petrie L (2013) Folate deficiency enhances the inflammatory response of macrophages. Mol Immunol 54:164–172

    Article  CAS  PubMed  Google Scholar 

  108. Resler G, Lavie R, Campos J, Mata S, Urbina M, Garcia A, Apitz R, Lima L (2008) Effect of folic acid combined with fluoxetine in patients with major depression on plasma homocysteine and vitamin B12, and serotonin levels in lymphocytes. Neuroimmunomodulation 15:145–152

    Article  CAS  PubMed  Google Scholar 

  109. Das UN (2008) Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease--but how and why? Prostaglandins Leukot Essent Fatty Acids 78:11–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a strategic award from the Wellcome Trust (Consortium of Neuroimmunology of Mood Disorders and Alzheimer’s Disease); the South London and Maudsley (SLaM) NHS Foundation Trust & Institute of Psychiatry NIHR Biomedical Research Centre (BRC) for Mental Health; and the grants ‘Persistent Fatigue Induced by Interferon-alpha: A New Immunological Model for Chronic Fatigue Syndrome’ (MR/J002739/1), and ‘Immuno-psychiatry: a consortium to test the opportunity for immunotherapeutics in psychiatry’ (MR/L014815/1), from the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Mondelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hastings, C.N.M., Sheridan, H., Pariante, C.M., Mondelli, V. (2016). Does Diet Matter? The Use of Polyunsaturated Fatty Acids (PUFAs) and Other Dietary Supplements in Inflammation-Associated Depression. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_31

Download citation

Publish with us

Policies and ethics