Skip to main content

Tripping with Synthetic Cannabinoids (“Spice”): Anecdotal and Experimental Observations in Animals and Man

  • Chapter
  • First Online:
Neuropharmacology of New Psychoactive Substances (NPS)

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 32))

Abstract

The phenomenon of consuming synthetic cannabinoids (“Spice”) for recreational purposes is a fairly recent trend. However, consumption of cannabis dates back millennia, with numerous accounts written on the experience of its consumption, and thousands of scientific reports published on the effects of its constituents in laboratory animals and humans. Here, we focus on consolidating the scientific literature on the effects of “Spice” compounds in various behavioral assays, including assessing abuse liability, tolerance, dependence, withdrawal, and potential toxicity. In most cases, the behavioral effects of “Spice” compounds are compared with those of Δ9-tetrahydrocannabinol. Methodological aspects, such as modes of administration and other logistical issues, are also discussed. As the original “Spice” molecules never were intended for human consumption, scientifically based information about potential toxicity and short- and long-term behavioral effects are very limited. Consequently, preclinical behavioral studies with “Spice” compounds are still in a nascent stage. Research is needed to address the addiction potential and other effects, including propensity for producing tissue/organ toxicity, of these synthetic cannabimimetic “Spice” compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

11-OH-THC:

11-Hydroxy-Δ9-tetrahydrocannabinol

2-AG:

2-Arachidonoyl glycerol

AM:

Alexandros Makriyannis

CB1R:

Cannabinoid receptor type-1

CB2R:

Cannabinoid receptor type-2

CBD:

Cannabidiol

CP:

Compound Pfizer

CPP:

Conditioned place preference

ECS:

Endocannabinoid system

ER:

Emergency room

HU:

Hebrew University

i.p.:

Intraperitoneal

i.v.:

Intravenous

ICSS:

Intra-cranial self-stimulation

JWH:

John W. Huffman

MFB:

medial forebrain bundle

SA:

Self-administration

THC:

Δ9-Tetrahydrocannabinol

References

  1. Hanus LO (2009) Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 29:213–271

    CAS  PubMed  Google Scholar 

  2. Badiani A (2010) History of psychopharmacology. In: Stolerman IP (ed) Encyclopedia of psychopharmacology. Springer, Berlin, Heidelberg, pp 593–603

    Google Scholar 

  3. Baruk H (1970) The Society Moreau de Tours and Psychopharmacology. Med Klin 65:1803–1805

    CAS  PubMed  Google Scholar 

  4. Mora G (1989) Historical antecedents of modern psychopharmacology. Psychiatr J Univ Ott 14:279–281

    CAS  PubMed  Google Scholar 

  5. Järbe TUC, Gifford RS, Zvonok A, Makriyannis A (2015) Δ9-Tetrahydrocannabinol discriminative stimulus effects of AM2201 and related aminoalkylindole analogs in rats. Behav Pharmacol

    Google Scholar 

  6. Gatch MB, Forster MJ (2014) Delta9-Tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice. Behav Pharmacol 25:750–757

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Glass M, Connor M, McGregor IS, Kassiou M (2015) Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci 6:1546–1559

    CAS  PubMed  Google Scholar 

  8. Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M (2015) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci

    Google Scholar 

  9. Fattore L, Fratta W (2011) Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci 5:60 (1-12)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE, Wiley JL (2014) Baths salts, spice, and related designer drugs: the science behind the headlines. J Neurosci 34:15150–15158

    PubMed  PubMed Central  Google Scholar 

  11. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 144:12–41

    CAS  PubMed  Google Scholar 

  12. Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471–478

    CAS  PubMed  Google Scholar 

  13. Wiley JL, Razdan RK, Martin BR (2006) Evaluation of the role of the arachidonic acid cascade in anandamide’s in vivo effects in mice. Life Sci 80:24–35

    CAS  PubMed  Google Scholar 

  14. Järbe TUC, Gifford RS (2014) “Herbal incense”: designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci 97:64–71

    PubMed  Google Scholar 

  15. Järbe TUC, Swedberg MDB (1982) A conceptualization of drug discrimination learning. In: Colpaert FC, Slangen JL (eds) Drug discrimination: application in CNS pharmacology. Elsevier/North-Holland Biomed Press, Amsterdam, pp 327–341

    Google Scholar 

  16. Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206

    CAS  PubMed  Google Scholar 

  17. Järbe TUC (2011) Perceptual drug discriminative aspects of the endocannabinoid signaling system in animals and man. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 241–285

    Google Scholar 

  18. Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE (2013) Differential drug-drug interactions of the synthetic cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther 346:350–361

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gatch MB, Forster MJ (2015) Delta9-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids found on the gray market. Behav Pharmacol 26:460–468

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gatch MB, Forster MJ (2016) Delta-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids in mice and rats. Psychopharmacology 233(10):1901–10

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Järbe TUC, Deng H, Vadivel SK, Makriyannis A (2011) Cannabinergic aminoalkylindoles, including AM678=JWH018 found in ‘Spice’, examined using drug (Δ9-THC) discrimination for rats. Behav Pharmacol 22:498–507

    PubMed  PubMed Central  Google Scholar 

  22. Samano KL, Poklis A, Lichtman AH (2013) Preclinical investigation of the abused synthetic cannabinoid CP47,497. College on Problems of Drug Dependence 75th Annual Meeting. College on Problems of Drug Dependence, San Diego, CA, abstract # 555

    Google Scholar 

  23. Wiley JL, Marusich JA, Lefever TW, Antonazzo KR, Wallgren MT, Cortes RA, Patel PR, Grabenauer M, Moore KN, Thomas BF (2015) AB-CHMINACA, AB-PINACA, and FUBIMINA: affinity and potency of novel synthetic cannabinoids in producing Delta9-tetrahydrocannabinol-like effects in mice. J Pharmacol Exp Ther 354:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wiley JL, Marusich JA, Lefever TW, Grabenauer M, Moore KN, Thomas BF (2013) Cannabinoids in disguise: Delta9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 75:145–154

    CAS  PubMed  Google Scholar 

  25. Rodriguez JS, McMahon LR (2014) JWH-018 in rhesus monkeys: differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects. Eur J Pharmacol 740:151–159

    CAS  PubMed  Google Scholar 

  26. Wiley JL, Lefever TW, Cortes RA, Marusich JA (2014) Cross-substitution of Delta9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats. Pharmacol Biochem Behav 124:123–128

    CAS  PubMed  Google Scholar 

  27. Muller HH, Kornhuber J, Sperling W (2015) The behavioral profile of spice and synthetic cannabinoids in humans. Brain Res Bull S0361–9230(15):30052–6

    Google Scholar 

  28. Tyndall JA, Gerona R, De Portu G, Trecki J, Elie MC, Lucas J, Slish J, Rand K, Bazydlo L, Holder M, Ryan MF, Myers P, Iovine N, Plourde M, Weeks E, Hanley JR, Endres G, Germaine DS, Dobrowolski PJ, Schwartz M (2015) An outbreak of acute delirium from exposure to the synthetic cannabinoid AB-CHMINACA. Clin Toxicol 53(10):950–6

    CAS  Google Scholar 

  29. Ginsburg BC, McMahon LR, Sanchez JJ, Javors MA (2012) Purity of synthetic cannabinoids sold online for recreational use. J Anal Toxicol 36:66–68

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu H-C, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79(7):516–25

    CAS  PubMed  Google Scholar 

  31. Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4:1770–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  33. Su MK, Seely KA, Moran JH, Hoffman RS (2015) Metabolism of classical cannabinoids and the synthetic cannabinoid JWH-018. Clin Pharmacol Ther 97:562–564

    CAS  PubMed  Google Scholar 

  34. Erratico C, Negreira N, Norouzizadeh H, Covaci A, Neels H, Maudens K, van Nuijs AL (2015) In vitro and in vivo human metabolism of the synthetic cannabinoid AB-CHMINACA. Drug Test Anal 7:866–876

    CAS  PubMed  Google Scholar 

  35. Gurney SM, Scott KS, Kacinko SL, Presley BC, Logan BK (2014) Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci Rev 26:53–78

    CAS  PubMed  Google Scholar 

  36. Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH (2012) Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos 40:2174–2184

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiebelhaus JM, Poklis JL, Poklis A, Vann RE, Lichtman AH, Wise LE (2012) Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend 126:316–323

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshell R, Kearney-Ramos T, Brents LK, Hyatt WS, Tai S, Prather PL, Fantegrossi WE (2014) In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Delta9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol Biochem Behav 124:40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Donohue K, Steiner R (2012) JWH-018 and JWH-022 as combustion products of AM2201. Microgram J 9:52–56

    CAS  Google Scholar 

  41. Järbe TUC, Li C, Vadivel SK, Makriyannis A (2010) Discriminative stimulus functions of methanandamide and Δ9-THC in rats: tests with aminoalkylindoles (WIN55,212-2 and AM678) and ethanol. Psychopharmacology (Berl) 208:87–98

    PubMed  Google Scholar 

  42. Ginsburg BC, Schulze DR, Hruba L, McMahon LR (2012) JWH-018 and JWH-073: Delta(9)-tetrahydrocannabinol-like discriminative stimulus effects in monkeys. J Pharmacol Exp Ther 340:37–45

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vann RE, Walentiny DM (2011) Preclinical evaluation of marijuana’s appetitive, rewarding and psychoactive properties. The 21st Annual Symposium of the International Cannabinoid Research Society. International Cannabinoid Research Society, Research Triangle Park, NC, USA, Pheasant Run, St. Charles, IL, USA

    Google Scholar 

  44. Hruba L, McMahon LR (2014) The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys. Eur J Pharmacol 727:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Järbe TUC, Hiltunen AJ, Mechoulam R (1989) Stereospecificity of the discriminative stimulus functions of the dimethylheptyl homologs of 11-hydroxy-Δ8-tetrahydrocannabinol in rats and pigeons. J Pharmacol Exp Ther 250:1000–1005

    PubMed  Google Scholar 

  46. Devane WA, Breuer A, Sheskin T, Järbe TUC, Eisen MS, Mechoulam R (1992) A novel probe for the cannabinoid receptor. J Med Chem 35:2065–2069

    CAS  PubMed  Google Scholar 

  47. Järbe TUC, Swedberg MD, Mechoulam R (1981) A repeated test procedure to assess onset and duration of the cue properties of (-) Δ9-THC, (-) Δ8-THC-DMH and (+) Δ8-THC. Psychopharmacology (Berl) 75:152–157

    PubMed  Google Scholar 

  48. Järbe TUC, Tai S, Lemay BJ, Nikas SP, Shukla VG, Zvonok A, Makriyannis A (2012) AM2389, a high-affinity, in vivo potent CB(1)-receptor-selective cannabinergic ligand as evidenced by drug discrimination in rats and hypothermia testing in mice. Psychopharmacology (Berl) 220:417–426

    PubMed  Google Scholar 

  49. Hancock-Allen JB, Barker L, VanDyke M, Holmes DB (2015) Notes from the field: death following ingestion of an Edible Marijuana Product--Colorado, March 2014. MMWR Morb Mortal Wkly Rep 64:771–772

    PubMed  PubMed Central  Google Scholar 

  50. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S (2011) Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 5:57

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan H, Ahmad T, Loureiro M, Zunder J, Laviolette SR (2014) The role of cannabinoid transmission in emotional memory formation: implications for addiction and schizophrenia. Front Psychiatry 5:73

    PubMed  PubMed Central  Google Scholar 

  52. Panlilio LV, Goldberg SR, Justinova Z (2015) Cannabinoid abuse and addiction: clinical and preclinical findings. Clin Pharmacol Ther 97:616–627

    CAS  PubMed  Google Scholar 

  53. Panagis G, Mackey B, Vlachou S (2014) Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future. Front Psychiatry 5:92

    PubMed  PubMed Central  Google Scholar 

  54. De Luca MA, Valentini V, Bimpisidis Z, Cacciapaglia F, Caboni P, Di Chiara G (2014) Endocannabinoid 2-arachidonoylglycerol self-administration by Sprague-Dawley rats and stimulation of in vivo dopamine transmission in the nucleus accumbens shell. Front Psychiatry 5:140

    PubMed  PubMed Central  Google Scholar 

  55. De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, Margiani G, Pintori N, Polis I, Marsicano G, Parsons LH, Di Chiara G (2015) Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 99:705–714

    PubMed  Google Scholar 

  56. Cha HJ, Lee KW, Song MJ, Hyeon YJ, Hwang JY, Jang CG, Ahn JI, Jeon SH, Kim HU, Kim YH, Seong WK, Kang H, Yoo HS, Jeong HS (2014) Dependence potential of the synthetic cannabinoids JWH-073, JWH-081, and JWH-210: in vivo and in vitro approaches. Biomol Ther (Seoul) 22:363–369

    CAS  PubMed  Google Scholar 

  57. Lefever TW, Marusich JA, Antonazzo KR, Wiley JL (2014) Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav 118:30–35

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Braida D, Iosue S, Pegorini S, Sala M (2004) Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol 506:63–69

    CAS  PubMed  Google Scholar 

  59. Braida D, Pozzi M, Parolaro D, Sala M (2001) Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol 413:227–234

    CAS  PubMed  Google Scholar 

  60. Schindler CW, Scherma M, Redhi GH, Vadivel SK, Makriyannis A, Goldberg SR, Justinova Z (2016) Self-administration of the anandamide transport inhibitor AM404 by squirrel monkeys. Psychopharmacology 233(10):1867–77

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vlachou S, Panagis G (2014) Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals. Curr Pharm Des 20:2072–2088

    CAS  PubMed  Google Scholar 

  62. Li JX, Koek W, France CP (2012) Interactions between Delta(9)-tetrahydrocannabinol and heroin: self-administration in rhesus monkeys. Behav Pharmacol 23:754–761

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Panlilio LV, Justinova Z, Goldberg SR (2010) Animal models of cannabinoid reward. Br J Pharmacol 160:499–510

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cooper ZD, Haney M (2008) Cannabis reinforcement and dependence: role of the cannabinoid CB1 receptor. Addict Biol 13:188–195

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Justinova Z, Goldberg SR, Heishman SJ, Tanda G (2005) Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol Biochem Behav 81:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153:31–43

    CAS  PubMed  Google Scholar 

  67. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    CAS  PubMed  Google Scholar 

  68. Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci 56:2073–2080

    CAS  PubMed  Google Scholar 

  69. Valjent E, Maldonado R (2000) A behavioural model to reveal place preference to delta 9-tetrahydrocannabinol in mice. Psychopharmacology (Berl) 147:436–438

    CAS  PubMed  Google Scholar 

  70. Pandolfo P, Vendruscolo LF, Sordi R, Takahashi RN (2009) Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder. Psychopharmacology (Berl) 205:319–326

    CAS  PubMed  Google Scholar 

  71. Hyatt WS, Fantegrossi WE (2014) Delta9-THC exposure attenuates aversive effects and reveals appetitive effects of K2/‘Spice’ constituent JWH-018 in mice. Behav Pharmacol 25:253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tampus R, Yoon SS, de la Pena JB, Botanas CJ, Kim HJ, Seo JW, Jeong EJ, Jang CG, Cheong JH (2015) Assessment of the abuse liability of synthetic cannabinoid agonists JWH-030, JWH-175, and JWH-176. Biomol Ther (Seoul) 23:590–596

    CAS  PubMed  Google Scholar 

  73. Negus SS, Miller LL (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66:869–917

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Desai RI, Thakur GA, Vemuri VK, Bajaj S, Makriyannis A, Bergman J (2013) Analysis of tolerance and behavioral/physical dependence during chronic CB1 agonist treatment: effects of CB1 agonists, antagonists, and noncannabinoid drugs. J Pharmacol Exp Ther 344:319–328

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh H, Schulze DR, McMahon LR (2011) Tolerance and cross-tolerance to cannabinoids in mice: schedule-controlled responding and hypothermia. Psychopharmacology (Berl) 215:665–675

    CAS  PubMed  Google Scholar 

  76. Fan F, Tao Q, Abood M, Martin BR (1996) Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res 706:13–20

    CAS  PubMed  Google Scholar 

  77. D’Souza DC, Cortes-Briones JA, Ranganathan M, Thurnauer H, Creatura G, Surti T, Planeta B, Neumeister A, Pittman B, Normandin M, Kapinos M, Ropchan J, Huang Y, Carson RE, Skosnik PD (2016) Rapid changes in CB1 receptor availability in cannabis dependent males after abstinence from cannabis. Biol Psychiatry Cogn Neurosci Neuroimaging 1:60–67

    PubMed  PubMed Central  Google Scholar 

  78. Gifford RS, Raghav JG, Järbe TUC (2016) Does agonist efficacy alter the in vivo effects of cannabinoids: girl, could we get much “higher”? In: Preedy VR (ed) Neuropathology of drug addictions and substance misuse, vol 1. Elsevier Inc. doi:10.1016/B978-0-12-800213-1.00067-5

  79. Tai S, Fantegrossi WE (2014) Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr Addict Rep 1:129–136

    PubMed  PubMed Central  Google Scholar 

  80. Tai S, Nikas SP, Shukla VG, Vemuri K, Makriyannis A, Jarbe TU (2015) Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist. Psychopharmacology (Berl) 232:2751–2761

    CAS  PubMed  Google Scholar 

  81. Tai S, Hyatt WS, Gu C, Franks LN, Vasiljevik T, Brents LK, Prather PL, Fantegrossi WE (2015) Repeated administration of phytocannabinoid Delta-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacol Res 102:22–32

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M (2015) JWH-018 impairs sensorimotor functions in mice. Neuroscience 300:174–188

    CAS  PubMed  Google Scholar 

  83. Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G, Marti M (2015) Novel halogenated derivates of JWH-018: behavioral and binding studies in mice. Neuropharmacology 95:68–82

    CAS  PubMed  Google Scholar 

  84. Cha HJ, Seong YH, Song MJ, Jeong HS, Shin J, Yun J, Han K, Kim YH, Kang H, Kim HS (2015) Neurotoxicity of synthetic cannabinoids JWH-081 and JWH-210. Biomol Ther (Seoul) 23:597–603

    CAS  PubMed  Google Scholar 

  85. Basavarajappa BS, Subbanna S (2014) CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 24:178–188

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wiley JL, Marusich JA, Huffman JW, Balster RL, Thomas BF (2011) Hijacking of basic research: the case of synthetic cannabinoids. Methods Rep RTI Press. doi:10.3768/rtipress.2011.op.0007.1111

Download references

Acknowledgements

Preparation of this manuscript was defrayed in part by the National Institute on Drug Abuse grant 5RO1DA 009064-19 as well as other NIH/NIDA funds awarded to the CDD. We thank Dr K. Vemuri for his help with chemistry related issues, including preparing Figs. 2 and 3 and Dr. J.L. Wiley for editorial suggestions. “Disclosure Statement”: Authors declare that there is no actual or potential conflict of interest related to this manuscript. “Role of the funding source(s)”: Authors declare that the study sponsor did not have any role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torbjörn U. C. Järbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Järbe, T.U.C., Raghav, J.G. (2016). Tripping with Synthetic Cannabinoids (“Spice”): Anecdotal and Experimental Observations in Animals and Man. In: Baumann, M.H., Glennon, R.A., Wiley, J.L. (eds) Neuropharmacology of New Psychoactive Substances (NPS). Current Topics in Behavioral Neurosciences, vol 32. Springer, Cham. https://doi.org/10.1007/7854_2016_16

Download citation

Publish with us

Policies and ethics