Skip to main content

Relating Translational Neuroimaging and Amperometric Endpoints: Utility for Neuropsychiatric Drug Discovery

  • Chapter
Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

Measures of neuronal activation are a natural and parsimonious translational biomarker to consider in the context of neuropsychiatric drug discovery studies. In this regard, functional neuroimaging using the BOLD fMRI technique is becoming more frequently employed to not only probe aberrant brain regions and circuits in disease, but also to assess the effects of novel pharmacological agents on these processes. In the ideal situation, these types of studies would first be conducted pre-clinically in rodents to confirm a measurable functional response on relevant brain circuits before seeking to replicate the findings in an analogous fMRI paradigm in humans. However, the need for animal immobilization during the scanning procedure precludes all but the simplest behavioural task-based paradigms in rodent BOLD fMRI. This chapter considers how in vivo oxygen amperometry may represent a viable and valid proxy for BOLD fMRI in freely moving rodents engaged in behavioural tasks. The amperometric technique and several examples of emerging evidence are described to show how the technique can deliver results that translate to pharmacological, event-related and functional connectivity variants of fMRI. In vivo oxygen amperometry holds great promise as a technique that may help to bridge the gap between basic drug discovery research in rodents and applied efficacy testing in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychiatric Association (2014) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. American Psychiatric Association

    Google Scholar 

  • Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, Buxton RB (2008) Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. NeuroImage 39(4):1510–1521

    Article  PubMed  Google Scholar 

  • Baker S, Chin CL, Basso AM, Fox GB, Marek GJ, Day M (2012) Xanomeline modulation of the blood oxygenation level-dependent signal in awake rats: development of pharmacological magnetic resonance imaging as a translatable pharmacodynamic biomarker for central activity and dose selection. J Pharmacol Exp Ther 341(1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    Article  CAS  PubMed  Google Scholar 

  • Becerra L, Harter K, Gonzalez RG, Borsook D (2006) Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth Analg 103(1):208–216 (table of contents)

    Google Scholar 

  • Becerra L, Pendse G, Chang PC, Bishop J, Borsook D (2011) Robust reproducible resting state networks in the awake rodent brain. PLoS ONE 6(10):e25701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger H (1933) Ãœber das Elektrenkephalogramm des Menschen. Eur Arch Psychiatry Clin Neurosci 98(1):231–254

    Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Bolger FB, Lowry JP (2005) Brain tissue oxygen: in vivo monitoring with carbon paste electrodes. Sensors 5:473–487

    Article  CAS  PubMed Central  Google Scholar 

  • Bolger FB, McHugh SB, Bennett R, Li J, Ishiwari K, Francois J, Conway MW, Gilmour G, Bannerman DM, Fillenz M, Tricklebank M, Lowry JP (2011) Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J Neurosci Methods 195(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. NeuroImage 37(4):1091–1096; discussion 1097–1099

    Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39(6):855–864

    Article  CAS  PubMed  Google Scholar 

  • Caesar K, Thomsen K, Lauritzen M (2003) Dissociation of spikes, synaptic activity, and activity-dependent increments in rat cerebellar blood flow by tonic synaptic inhibition. Proc Natl Acad Sci USA 100(26):16000–16005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter CS, Barch DM (2007) Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophr Bull 33(5):1131–1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin CL, Upadhyay J, Marek GJ, Baker SJ, Zhang M, Mezler M, Fox GB, Day M (2011) Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals. J Pharmacol Exp Ther 336(3):709–715

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert BN (2015) Research Domain Criteria: toward future psychiatric nosologies. Dialogues Clin Neurosci 17(1):89–97

    PubMed  PubMed Central  Google Scholar 

  • Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23(8):420–428

    Article  CAS  PubMed  Google Scholar 

  • Damadian R, Goldsmith M, Minkoff L (1977) NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys 9(1):97–100, 108

    Google Scholar 

  • De Simoni S, Schwarz AJ, O’Daly OG, Marquand AF, Brittain C, Gonzales C, Stephenson S, Williams SC, Mehta MA (2013) Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage 64:75–90

    Article  PubMed  Google Scholar 

  • Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65(2):154–164

    Article  PubMed  Google Scholar 

  • Doyle OM, De Simoni S, Schwarz AJ, Brittain C, O’Daly OG, Williams SC, Mehta MA (2013a) Quantifying the attenuation of the ketamine pharmacological magnetic resonance imaging response in humans: a validation using antipsychotic and glutamatergic agents. J Pharmacol Exp Ther 345(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Doyle OM, De Simoni S, Schwarz AJ, Brittain C, O’Daly OG, Williams SC, Mehta MA (2013b) Quantifying the attenuation of the ketamine pharmacological magnetic resonance imaging response in humans: a validation using antipsychotic and glutamatergic agents. J Pharmacol Exp Ther 345(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’Souza DC, Gueorguieva R, He G, Ramachandran R, Suckow RF, Anticevic A, Morgan PT, Krystal JH (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry 18(11):1199–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998a) Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812(1–2):65–75

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Moy SS, Knapp DJ, Mueller RA, Breese GR (1998b) Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res 787(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA (2000) Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism. J Pharmacol Exp Ther 293(1):8–14

    CAS  PubMed  Google Scholar 

  • Duong TQ, Kim DS, Ugurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98(19):10904–10909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel AK, Moll CK, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47

    Google Scholar 

  • Ferrari L, Turrini G, Crestan V, Bertani S, Cristofori P, Bifone A, Gozzi A (2012) A robust experimental protocol for pharmacological fMRI in rats and mice. J Neurosci Methods 204(1):9–18

    Article  PubMed  Google Scholar 

  • Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Frontiers Syst Neurosci 4:19

    Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois J, Conway MW, Lowry JP, Tricklebank MD, Gilmour G (2012) Changes in reward-related signals in the rat nucleus accumbens measured by in vivo oxygen amperometry are consistent with fMRI BOLD responses in man. NeuroImage 60(4):2169–2181

    Article  PubMed  Google Scholar 

  • Francois J, Huxter J, Conway MW, Lowry JP, Tricklebank MD, Gilmour G (2014) Differential contributions of infralimbic prefrontal cortex and nucleus accumbens during reward-based learning and extinction. J Neurosci (the official journal of the Society for Neuroscience) 34(2):596–607

    Article  CAS  Google Scholar 

  • Francois J, Gastambide F, Conway MW, Tricklebank M, Gilmour G (2015) Dissociation of mGlu2/3 agonist effects on ketamine-induced regional and event-related oxygen signals. Psychopharmacology 232:4219–4229

    Google Scholar 

  • Gadian D (1996) NMR and its applications to living systems, 2nd edn. Oxford University Press, UK

    Google Scholar 

  • Gass N, Schwarz AJ, Sartorius A, Schenker E, Risterucci C, Spedding M, Zheng L, Meyer-Lindenberg A, Weber-Fahr W (2014) Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 39(4):895–906

    Article  CAS  Google Scholar 

  • Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol (CB) 18(9):631–640

    Article  CAS  Google Scholar 

  • Gozzi A, Large CH, Schwarz A, Bertani S, Crestan V, Bifone A (2008) Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 33(7):1690–1703

    Article  CAS  Google Scholar 

  • Hitchman ML (1978) Measurement of dissolved oxygen. Krieger Publishing Company

    Google Scholar 

  • Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SR, Alsio J, Oomen CA, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8(10):1961–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Lustig C, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci (the official journal of the Society for Neuroscience) 33(20):8742–8752

    Article  CAS  Google Scholar 

  • Huettel SA, McKeown MJ, Song AW, Hart S, Spencer DD, Allison T,.McCarthy G (2004) Linking hemodynamic and electrophysiological measures of brain activity: evidence from functional MRI and intracranial field potentials. Cerebral Cortex (New York, 1991) 14(2):165–173

    Google Scholar 

  • Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci USA 99(16):10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25(6):978–988

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG (2012) Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. NeuroImage 62(2):1072–1085

    Article  CAS  PubMed  Google Scholar 

  • Joules R, Doyle OM, Schwarz AJ, O’Daly OG, Brammer M, Williams SC, Mehta MA (2015) Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology 232:4205–4218

    Google Scholar 

  • Kane DA, O’Neill RD (1998) Major differences in the behaviour of carbon paste and carbon fibre electrodes in a protein-lipid matrix: implications for voltammetry in vivo. Analyst 123(12):2899–2903

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18(4):411–417

    Article  PubMed  Google Scholar 

  • Knutson B, Westdorp A, Kaiser E, Hommer D (2000) FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 12(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci (the official journal of the Society for Neuroscience) 21(16):RC159

    Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  CAS  PubMed  Google Scholar 

  • Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, Li SJ (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. NeuroImage 28(4):904–914

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 13(1):9–19

    Article  CAS  Google Scholar 

  • Langsjo JW, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V, Sipila H, Kurki T, Silvanto M, Scheinin H (2003) Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99(3):614–623

    Article  PubMed  Google Scholar 

  • Langsjo JW, Salmi E, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V, Viljanen T, Kurki T, Silvanto M, Scheinin H (2004) Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology 100(5):1065–1071

    Article  PubMed  Google Scholar 

  • Lauterbur PC (1973) Image Formation by Induced Local Interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Leppa M, Korvenoja A, Carlson S, Timonen P, Martinkauppi S, Ahonen J, Rosenberg PH, Aronen HJ, Kalso E (2006) Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. NeuroImage 31(2):661–669

    Article  PubMed  Google Scholar 

  • Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21(8):314–318

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ishiwari K, Conway MW, Francois J, Huxter J, Lowry JP, Schwarz AJ, Tricklebank M, Gilmour G (2014) Dissociable effects of antipsychotics on ketamine-induced changes in regional oxygenation and inter-regional coherence of low frequency oxygen fluctuations in the rat. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 39(7):1635–1644

    Article  CAS  Google Scholar 

  • Li J, Martin S, Tricklebank MD, Schwarz AJ, Gilmour G (2015) Task-induced modulation of intrinsic functional connectivity networks in the behaving rat. J Neurosci (the official journal of the Society for Neuroscience) 35(2):658–665

    Article  CAS  Google Scholar 

  • Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. NeuroImage 115:281–291

    Article  PubMed  Google Scholar 

  • Littlewood CL, Jones N, O’Neill MJ, Mitchell SN, Tricklebank M, Williams SC (2006) Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology 186(1):64–81

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  • Lowry JP, Boutelle MG, O’Neill RD, Fillenz M (1996) Characterization of carbon paste electrodes in vitro for simultaneous amperometric measurement of changes in oxygen and ascorbic acid concentrations in vivo. Analyst 121(6):761–766

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. Proc Natl Acad Sci USA 109(10):3979–3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 14(5):301–307

    Article  CAS  Google Scholar 

  • Mandeville JB, Marota JJ, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM (1998) Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 39(4):615–624

    Article  CAS  PubMed  Google Scholar 

  • Mandeville JB, Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR (1999) MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation. Magn Reson Med 42(5):944–951

    Article  CAS  PubMed  Google Scholar 

  • Mansfield P, Maudsley AA (1976) Line scan proton spin imaging in biological structures by NMR. Phys Med Biol 21(5):847–852

    Article  CAS  PubMed  Google Scholar 

  • Mar AC, Horner AE, Nilsson SR, Alsio J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8(10):1985–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2009) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 34(1):74–89

    Article  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512 (Pt 2):555–566

    Article  Google Scholar 

  • Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523(Pt 1):235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh SB, Fillenz M, Lowry JP, Rawlins JN, Bannerman DM (2011) Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety. Eur J Neurosci 33(2):322–337

    Article  PubMed  PubMed Central  Google Scholar 

  • McHugh SB, Marques-Smith A, Li J, Rawlins JN, Lowry J, Conway M, Gilmour G, Tricklebank M, Bannerman DM (2013) Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats. Eur J Neurosci 37(3):498–507

    Article  PubMed  Google Scholar 

  • McHugh SB, Barkus C, Huber A, Capitao L, Lima J, Lowry JP, Bannerman DM (2014) Aversive prediction error signals in the amygdala. J Neurosci (the official journal of the Society for Neuroscience) 34(27):9024–9033

    Article  Google Scholar 

  • McKie S, Richardson P, Elliott R, Vollm BA, Dolan MC, Williams SR, Anderson IM, Deakin JF (2011) Mirtazapine antagonises the subjective, hormonal and neuronal effects of m-chlorophenylpiperazine (mCPP) infusion: a pharmacological-challenge fMRI (phMRI) study. NeuroImage 58(2):497–507

    Article  PubMed  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discovery Today 17(9–10):419–424

    Article  CAS  PubMed  Google Scholar 

  • Mosso A (1884) Applicazione della bilancia allo studio della circolazione sanguigna dell’uomo. Atti R Accad Lincei Mem Cl Sci Fis Mat Nat XIX:531–543

    Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 20(2):106–118

    Article  CAS  Google Scholar 

  • Offenhauser N, Thomsen K, Caesar K, Lauritzen M (2005) Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol 565(Pt 1):279–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill RD, Lowry JP, Mas M (1998) Monitoring brain chemistry in vivo: voltammetric techniques, sensors, and behavioral applications. Crit Rev Neurobiol 12(1–2):69–127

    Article  PubMed  Google Scholar 

  • Oomen CA, Hvoslef-Eide M, Heath CJ, Mar AC, Horner AE, Bussey TJ, Saksida LM (2013) The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat Protoc 8(10):2006–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discovery 9(3):203–214

    CAS  PubMed  Google Scholar 

  • Pawela CP, Biswal BB, Cho YR, Kao DS, Li R, Jones SR, Schulte ML, Matloub HS, Hudetz AG, Hyde JS (2008) Resting-state functional connectivity of the rat brain. Magn Reson Med 59(5):1021–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahakian BJ, Owen AM (1992) Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med 85(7):399–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz AJ, Gass N, Sartorius A, Risterucci C, Spedding M, Schenker E, Meyer-Lindenberg A, Weber-Fahr W (2013a) Anti-correlated cortical networks of intrinsic connectivity in the rat brain. Brain connectivity 3(5):503–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz AJ, Gass N, Sartorius A, Zheng L, Spedding M, Schenker E, Risterucci C, Meyer-Lindenberg A, Weber-Fahr W (2013b) The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal-prefrontal network in the rat brain. Neuroscience 228:243–258

    Article  CAS  PubMed  Google Scholar 

  • Sforazzini F, Bertero A, Dodero L, David G, Galbusera A, Scattoni ML, Pasqualetti M, Gozzi A (2014a) Altered functional connectivity networks in acallosal and socially impaired BTBR mice. Brain Struct Function

    Google Scholar 

  • Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A (2014b) Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. NeuroImage 87:403–415

    Article  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2002) Biophysical basis of brain activity: implications for neuroimaging. Q Rev Biophys 35(3):287–325

    Article  CAS  PubMed  Google Scholar 

  • Sibson NR, McHugh SB, Lowry JP (2009) Combined fMRI and metabolic voltammetry in vivo: understanding the neurochemical basis of functional imaging signals. Br Neurosci Assoc Abstr 20:48

    Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA 99(16):10765–10770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smucny J, Wylie KP, Tregellas JR (2014) Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci 35(8):397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155(8):1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay J, Anderson J, Schwarz AJ, Coimbra A, Baumgartner R, Pendse G, George E, Nutile L, Wallin D, Bishop J, Neni S, Maier G, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Becerra L, Borsook D (2011) Imaging drugs with and without clinical analgesic efficacy. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 36(13):2659–2673

    Article  CAS  Google Scholar 

  • Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87(5):1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Vollm BA, de Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology (official publication of the American College of Neuropsychopharmacology) 29(9):1715–1722

    Article  Google Scholar 

  • WHO (1992) World Health Organisation: international statistical classification of diseases and related health problems, 10th Revision (ICD-10)

    Google Scholar 

  • Zhao F, Wang P, Hendrich K, Kim SG (2005) Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. NeuroImage 27(2):416–424

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Gao B, Hua J, Liu W, Deng Y, Zhang L, Jiang B, Zang Y (2013) Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study. Neurosci Bull 29(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JB, Kennedy RT, Wightman RM (1992) Evoked neuronal activity accompanied by transmitter release increases oxygen concentration in rat striatum in vivo but not in vitro. J Cereb Blood Flow Metab (official journal of the International Society of Cerebral Blood Flow and Metabolism) 12(4):629–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gilmour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Schwarz, A.J., Gilmour, G. (2015). Relating Translational Neuroimaging and Amperometric Endpoints: Utility for Neuropsychiatric Drug Discovery. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2016_1

Download citation

Publish with us

Policies and ethics