Skip to main content

Translatable and Back-Translatable Measurement of Impulsivity and Compulsivity: Convergent and Divergent Processes

  • Chapter
Book cover Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

Impulsivity and compulsivity have emerged as important dimensional constructs that challenge traditional psychiatric classification systems. Both are present in normal healthy populations where the need to act quickly and repeatedly without hesitation can be highly advantageous. However, when excessively expressed, impulsive and compulsive behavior can lead to adverse consequences and spectrum disorders exemplified by attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), autism, and drug addiction. Impulsive individuals have difficulty in deferring gratification and are inclined to ‘jump the gun’ and respond prematurely before sufficient information is gathered. Compulsivity involves repetitive behavior often motivated by the need to reduce or prevent anxiety, thus leading to the maladaptive perseveration of behavior. Defined in this way, impulsivity and compulsivity could be viewed as separate entities or ‘traits’ but overwhelming evidence indicates that both may be present in the same disorder, either concurrently or even separately at different time points. Herein we discuss the neural and cognitive heterogeneity of impulsive and compulsive endophenotypes. These constructs map onto distinct fronto-striatal neural and neurochemical structures interacting both at nodal convergent points and as opponent processes highlighting both the heterogeneity and the commonalities of function. We focus on discoveries made using both translational research methodologies and studies exclusively in humans, and implications for treatment intervention in disorders in which impulsive and compulsive symptoms prevail. We emphasize the relevance of these constructs for understanding dimensional psychiatry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CD, Dickinson A (1981) Instrumental responding following reinforcer devaluation. Q J Exp Psychol 33:109–122

    Article  Google Scholar 

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82(4):463–496

    Article  CAS  PubMed  Google Scholar 

  • Albelda N, Joel D (2012) Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36(1):47–63

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrova LR, Creed MC, Fletcher PJ, Lobo DS, Hamani C, Nobrega JN (2013) Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behav Brain Res 245:76–82

    Article  PubMed  Google Scholar 

  • Alsio J, Nilsson SR, Gastambide F, Wang RA, Dam SA, Mar AC et al (2015) The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology 232(21–22):4017–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasio NC, Stoffel EC, Fox RG, Bubar MJ, Rice KC, Moeller FG et al (2011) Serotonin (5-hydroxytryptamine) 5-HT(2A) receptor: association with inherent and cocaine-evoked behavioral disinhibition in rats. Behav Pharmacol 22(3):248–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansquer S, Belin-Rauscent A, Dugast E, Duran T, Benatru I, Mar AC et al (2014) Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol Psychiatry 75(10):825–832

    Article  CAS  PubMed  Google Scholar 

  • Arnt J (1985) Antistereotypic effects of dopamine D-1 and D-2 antagonists after intrastriatal injection in rats. Pharmacological and regional specificity. Naunyn-Schmiedeberg’s Arch Pharmacol 330(2):97–104

    Article  CAS  Google Scholar 

  • Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69(12):e55–e68

    Article  PubMed  Google Scholar 

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003a) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54(12):1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003b) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116

    Article  CAS  PubMed  Google Scholar 

  • Austin JL, Bevan D (2011) Using differential reinforcement of low rates to reduce children’s requests for teacher attention. J Appl Behav Anal 44(3):451–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Baarendse PJ, Winstanley CA, Vanderschuren LJ (2013) Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology 225(3):719–731

    Article  CAS  PubMed  Google Scholar 

  • Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P et al (2009) Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 66(6):817–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballard K, Knutson B (2009) Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neuroimage 45(1):143–150

    Article  PubMed  Google Scholar 

  • Ballard ME, Mandelkern MA, Monterosso JR, Hsu E, Robertson CL, Ishibashi K et al (2015) Low dopamine D2/D3 receptor availability is associated with steep discounting of delayed rewards in methamphetamine dependence. Int J Neuropsychopharmacol 18(7):pyu119

    Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419

    Article  CAS  PubMed  Google Scholar 

  • Banca P, Vestergaard MD, Rankov V, Baek K, Mitchell S, Lapa T et al (2014) Evidence accumulation in obsessive-compulsive disorder: the role of uncertainty and monetary reward on perceptual decision-making thresholds. Neuropsychopharmacology 40(5):1192–1202

    Google Scholar 

  • Banca P, Lange I, Worbe Y, Howell NA, Irvine M, Harrison NA et al (2015) Reflection impulsivity in binge drinking: behavioural and volumetric correlates. Addict Biol

    Google Scholar 

  • Bari A, Robbins TW (2013) Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology 230(1):89–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205(2):273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari A, Mar AC, Theobald DE, Elands SA, Oganya KC, Eagle DM et al (2011) Prefrontal and monoaminergic contributions to stop-signal task performance in rats. J Neurosci 31(25):9254–9263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow RL, Alsio J, Jupp B, Rabinovich R, Shrestha S, Roberts AC et al (2015) Markers of serotonergic function in the orbitofrontal cortex and dorsal raphe nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 40(7):1619–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basten U, Biele G, Heekeren HR, Fiebach CJ (2010) How the brain integrates costs and benefits during decision making. Proc Natl Acad Sci USA 107(50):21767–21772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099

    Article  CAS  PubMed  Google Scholar 

  • Baunez C, Nieoullon A, Amalric M (1995) In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci 15(10):6531–6541

    CAS  PubMed  Google Scholar 

  • Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320(5881):1352–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin GS, Hollander E (2014) Compulsivity, impulsivity, and the DSM-5 process. CNS Spectr 19(1):62–68

    Article  PubMed  Google Scholar 

  • Bickel WK, Koffarnus MN, Moody L, Wilson AG (2013) The behavioral- and neuro-economic process of temporal discounting: a candidate behavioral marker of addiction. Neuropharmacology 76 Pt B:518–527

    Google Scholar 

  • Bickel WK, Koffarnus MN, Moody L, Wilson AG (2014) The behavioral- and neuro-economic process of temporal discounting: a candidate behavioral marker of addiction. Neuropharmacology. 76 Pt B:518–527

    Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108(3):624–652

    Article  CAS  PubMed  Google Scholar 

  • Boulougouris V, Robbins TW (2010) Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci 30(3):930–938

    Article  CAS  PubMed  Google Scholar 

  • Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33(8):2007–2019

    Article  CAS  PubMed  Google Scholar 

  • Brewer JA, Potenza MN (2008) The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol 75(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Brown RT, Sleator EK (1979) Methylphenidate in hyperkinetic children: differences in dose effects on impulsive behavior. Pediatrics 64(4):408–411

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS et al (2010) Dopaminergic network differences in human impulsivity. Science 329(5991):532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Oldenkamp CL, Aron AR (2011) A proactive mechanism for selective suppression of response tendencies. J Neurosci 31(16):5965–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camchong J, MacDonald AW 3rd, Nelson B, Bell C, Mueller BA, Specker S et al (2011) Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry 69(11):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canales JJ, Graybiel AM (2000) Patterns of gene expression and behavior induced by chronic dopamine treatments. Ann Neurol 47(4 Suppl 1):S53–S59

    CAS  PubMed  Google Scholar 

  • Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B et al. (2013) Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol Psychiatry 75:115–123

    Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292(5526):2499–2501

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ (2004) Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci 1021:33–50

    Article  PubMed  Google Scholar 

  • Castane A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210(1):74–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW et al (2007a) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62(9):977–984

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain SR, Fineberg NA, Menzies LA, Blackwell AD, Bullmore ET, Robbins TW et al (2007b) Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive-compulsive disorder. Am J Psychiatry 164(2):335–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers CD, Garavan H, Bellgrove MA (2009) Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33(5):631–646

    Article  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23(25):8771–8780

    CAS  PubMed  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146(1–2):105–119

    Article  CAS  PubMed  Google Scholar 

  • Clark L, Robbins TW, Ersche KD, Sahakian BJ (2006) Reflection impulsivity in current and former substance users. Biol Psychiatry 60(5):515–522

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304(5672):878–880

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28(43):10972–10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke HF, Hill GJ, Robbins TW, Roberts AC (2011) Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci 31(11):4290–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L et al (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29(15):4690–4696

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology 91(4):458–466

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 33(2):165–179

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22(11):4563–4567

    CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41(11):1431–1441

    Article  PubMed  Google Scholar 

  • Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 136(2):349–357

    Article  CAS  PubMed  Google Scholar 

  • Cunningham KA, Anastasio NC (2014) Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 6 Pt B:460–478

    Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K et al (2007a) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816):1267–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalley JW, Laane K, Theobald DE, Pena Y, Bruce CC, Huszar AC et al (2007b) Enduring deficits in sustained visual attention during withdrawal of intravenous methylenedioxymethamphetamine self-administration in rats: results from a comparative study with d-amphetamine and methamphetamine. Neuropsychopharmacology 32(5):1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90(2):250–260

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69(4):680–694

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw Official J Int Neural Netw Soc 15(4–6):603–616

    Article  Google Scholar 

  • Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based influences on humans’ choices and striatal prediction errors. Neuron 69(6):1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34(4):1027–1038

    Article  PubMed  Google Scholar 

  • de Wit H (2009) Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 14(1):22–31

    Article  PubMed  Google Scholar 

  • de Wit S, Corlett PR, Aitken MR, Dickinson A, Fletcher PC (2009) Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci 29(36):11330–11338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Wit S, Watson P, Harsay HA, Cohen MX, van de Vijver I, Ridderinkhof KR (2012a) Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J Neurosci 32(35):12066–12075

    Article  PubMed  CAS  Google Scholar 

  • de Wit S, Standing HR, Devito EE, Robinson OJ, Ridderinkhof KR, Robbins TW et al (2012b) Reliance on habits at the expense of goal-directed control following dopamine precursor depletion. Psychopharmacology 219(2):621–631

    Article  PubMed  CAS  Google Scholar 

  • Delfs JM, Kelley AE (1990) The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum. Neuroscience 39(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2015) Basal Ganglia circuits as targets for neuromodulation in parkinson disease. JAMA neurology. 2015:1–7

    Google Scholar 

  • Denys D (2011) Obsessionality & compulsivity: a phenomenology of obsessive-compulsive disorder. Philos Ethics Humanit Med 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Denys D, van der Wee N, Janssen J, De Geus F, Westenberg HG (2004) Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry 55(10):1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA et al (2015) Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA 112(5):1595–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896–908

    Article  CAS  PubMed  Google Scholar 

  • DeVito EE, Blackwell AD, Clark L, Kent L, Dezsery AM, Turner DC et al (2009) Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology 202(1–3):531–539

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380(6569):69–72

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A, Balleine BW (2002) The role of learning in the operation of motivational systems. In: Gallister CR (ed) Steven’s handbook of experimental psychology: learning, motivation and emotion. vol 3, 3rd edn. Wiley , New York, pp 497–534

    Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN et al (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63(3):301–308

    Article  CAS  PubMed  Google Scholar 

  • Diergaarde L, Pattij T, Nawijn L, Schoffelmeer AN, De Vries TJ (2009) Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behav Neurosci 123(4):794–803

    Article  CAS  PubMed  Google Scholar 

  • Divac I (1972) Drug-induced syndromes in rats with large, chronic lesions in the corpus striatum. Psychopharmacologia 27(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Djamshidian A, O’Sullivan SS, Sanotsky Y, Sharman S, Matviyenko Y, Foltynie T et al (2012) Decision making, impulsivity, and addictions: do Parkinson’s disease patients jump to conclusions? Mov Disord 27(9):1137–1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Djamshidian A, O’Sullivan SS, Foltynie T, Aviles-Olmos I, Limousin P, Noyce A et al (2013) Dopamine agonists rather than deep brain stimulation cause reflection impulsivity in Parkinson’s disease. J Parkinson’s Dis 3(2):139–144

    CAS  Google Scholar 

  • Dolan RJ, Dayan P (2013) Goals and habits in the brain. Neuron 80(2):312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty DM, Mathias CW, Marsh DM, Moeller FG, Swann AC (2004) Suicidal behaviors and drug abuse: impulsivity and its assessment. Drug Alcohol Depend 76(Suppl):S93–S105

    Article  PubMed  Google Scholar 

  • Dougherty DM, Mullen J, Hill-Kapturczak N, Liang Y, Karns TE, Lake SL et al (2015) Effects of tryptophan depletion and a simulated alcohol binge on impulsivity. Exp Clin Psychopharmacol 23(2):109–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchesne M, Mattos P, Appolinario JC, de Freitas SR, Coutinho G, Santos C et al (2010) Assessment of executive functions in obese individuals with binge eating disorder. Rev Bras Psiquiatr 32(4):381–388

    Article  PubMed  Google Scholar 

  • Durana JH, Barnes PA (1993) A neurodevelopmental view of impulsivity and its relationship to the superfactors of personality. In: McCown WG, Johnson JL, Shure MB (eds) The impulsive Client: Theory, Research and Treatment. American Psychological Association, Washington, D.C.

    Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34(1):50–72

    Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117(6):1302–1317

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology 192(2):193–206

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199(3):439–456

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Lehmann O, Theobald DE, Pena Y, Zakaria R, Ghosh R et al (2009) Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacology 34(5):1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 65(10):851–856

    Article  CAS  PubMed  Google Scholar 

  • Economidou D, Theobald DE, Robbins TW, Everitt BJ, Dalley JW (2012) Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology 37(9):2057–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology 197(3):421–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ersche KD, Bullmore ET, Craig KJ, Shabbir SS, Abbott S, Muller U et al (2010) Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch Gen Psychiatry 67(6):632–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335(6068):601–604

    Article  CAS  PubMed  Google Scholar 

  • Eskenazi D, Neumaier JF (2011) Increased expression of 5-HT(6) receptors in dorsolateral striatum decreases habitual lever pressing, but does not affect learning acquisition of simple operant tasks in rats. Eur J Neurosci 34(2):343–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans AH, Katzenschlager R, Paviour D, O’Sullivan JD, Appel S, Lawrence AD et al (2004) Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov Disord 19(4):397–405

    Article  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146(4):348–361

    Article  CAS  PubMed  Google Scholar 

  • Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25(11):2771–2780

    Article  CAS  PubMed  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126(Pt 8):1830–1837

    Article  PubMed  Google Scholar 

  • Feola TW, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114(4):838–848

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Serrano MJ, Perales JC, Moreno-Lopez L, Perez-Garcia M, Verdejo-Garcia A (2012) Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals. Psychopharmacology 219(2):673–683

    Article  CAS  PubMed  Google Scholar 

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton-Century-Crofts, New York

    Book  Google Scholar 

  • Fillmore MT, Rush CR (2006) Polydrug abusers display impaired discrimination-reversal learning in a model of behavioural control. J Psychopharmacol 20(1):24–32

    Article  PubMed  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A et al (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35(3):591–604

    Article  PubMed  Google Scholar 

  • Floresco SB, Tse MT, Ghods-Sharifi S (2008) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33(8):1966–1979

    Article  CAS  PubMed  Google Scholar 

  • Fog R (1972) On stereotypy and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Acta Neurol Scand Suppl 50:3–66

    CAS  PubMed  Google Scholar 

  • Fonseca MS, Murakami M, Mainen ZF (2015) Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr Biol 25(3):306–315

    Article  CAS  PubMed  Google Scholar 

  • Fortier CB, Steffen EM, Lafleche G, Venne JR, Disterhoft JF, McGlinchey RE (2008) Delay discrimination and reversal eyeblink classical conditioning in abstinent chronic alcoholics. Neuropsychology 22(2):196–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw Official J Int Neural Network Soc 19(8):1120–1136

    Article  Google Scholar 

  • Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318(5854):1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Friedel E, Koch SP, Wendt J, Heinz A, Deserno L, Schlagenhauf F (2014) Devaluation and sequential decisions: linking goal-directed and model-based behavior. Front Hum Neurosci 8:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Furl N, Averbeck BB (2011) Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. J Neurosci 31(48):17572–17582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. J Neural Transm Suppl 36:43–59

    CAS  PubMed  Google Scholar 

  • Gillan CM, Papmeyer M, Morein-Zamir S, Sahakian BJ, Fineberg NA, Robbins TW et al (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatry 168(7):718–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM et al (2013) Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry

    Google Scholar 

  • Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66(4):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Ann Rev Neurosci 30:535–574

    Article  CAS  PubMed  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645

    Article  PubMed  Google Scholar 

  • Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W (2006) Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction 101(4):534–547

    Article  PubMed  Google Scholar 

  • Graf H, Abler B, Freudenmann R, Beschoner P, Schaeffeler E, Spitzer M et al (2011) Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol Psychiatry 69(9):890–897

    Article  CAS  PubMed  Google Scholar 

  • Grant DA, Berg E (1948) A behavioural analysis of degree of reinforcement and ease of shifting to new responses in Weigl-type card-sorting problem. J Exp Psychol 38:404–411

    Article  CAS  PubMed  Google Scholar 

  • Grant JE, Odlaug BL, Chamberlain SR (2011) Neurocognitive response to deep brain stimulation for obsessive-compulsive disorder: a case report. Am J Psychiatry 168(12):1338–1339

    Article  PubMed  Google Scholar 

  • Gregorios-Pippas L, Tobler PN, Schultz W (2009) Short-term temporal discounting of reward value in human ventral striatum. J Neurophysiol 101(3):1507–1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubner NR, Wilhelm CJ, Phillips TJ, Mitchell SH (2010) Strain differences in behavioral inhibition in a Go/No-go task demonstrated using 15 inbred mouse strains. Alcohol Clin Exp Res 34(8):1353–1362

    PubMed  PubMed Central  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    CAS  PubMed  Google Scholar 

  • Hampshire A, Chaudhry AM, Owen AM, Roberts AC (2012) Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning. NeuroImage 59(4):4102–4112

    Article  PubMed  Google Scholar 

  • Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW (2014) Brain gamma-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 39(11):1921–1932

    Article  PubMed  Google Scholar 

  • Higgins GA, Silenieks LB, Rossmann A, Rizos Z, Noble K, Soko AD et al (2012) The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control. Neuropsychopharmacology 37(5):1177–1191

    Article  CAS  PubMed  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR et al (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16(3):463–478

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67(1):176–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huddy VC, Clark L, Harrison I, Ron MA, Moutoussis M, Barnes TR et al (2013) Reflection impulsivity and response inhibition in first-episode psychosis: relationship to cannabis use. Psychol Med 43(10):2097–2107

    Article  CAS  PubMed  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2005) Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J Neurosci 25(13):3304–3311

    Article  CAS  PubMed  Google Scholar 

  • Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167(7):748–751

    Article  PubMed  Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11(4):376–386

    Article  CAS  PubMed  Google Scholar 

  • Jaffard M, Longcamp M, Velay JL, Anton JL, Roth M, Nazarian B et al (2008) Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage 42(3):1196–1206

    Article  PubMed  Google Scholar 

  • Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 29(12):3695–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J et al (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology 185(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joutsa J, Voon V, Johansson J, Niemela S, Bergman J, Kaasinen V (2015) Dopaminergic function and intertemporal choice. Transl Psychiatry 5:e491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kable JW, Glimcher PW (2007) The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10(12):1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan J (1966) Reflection–impulsivity: the generality and dynamics of conceptual tempo. J Abnorm Psychol 71(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Kaladjian A, Jeanningros R, Azorin JM, Anton JL, Mazzola-Pomietto P (2011) Impulsivity and neural correlates of response inhibition in schizophrenia. Psychol Med 41(2):291–299

    Article  CAS  PubMed  Google Scholar 

  • Kas MJ, Glennon JC, Buitelaar J, Ey E, Biemans B, Crawley J et al (2014) Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology 231(6):1125–1146

    Article  CAS  PubMed  Google Scholar 

  • Kayser AS, Allen DC, Navarro-Cebrian A, Mitchell JM, Fields HL (2012) Dopamine, corticostriatal connectivity, and intertemporal choice. J Neurosci 32(27):9402–9409

    Article  CAS  PubMed  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94(3):507–522

    Article  CAS  PubMed  Google Scholar 

  • Keramati M, Dezfouli A, Piray P (2011) Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput Biol 7(5):e1002055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani R, Shadlen MN (2009) Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324(5928):759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408

    Article  PubMed  Google Scholar 

  • Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28(31):7837–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Le Moal M (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 363(1507):3113–3123

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreipke CW, Walker PD (2004) NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation. Synapse 53(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • LaHoste GJ, Marshall JF (1993) New concepts in dopamine receptor plasticity. Ann N Y Acad Sci 702:183–196

    Article  CAS  PubMed  Google Scholar 

  • Langen M, Kas MJ, Staal WG, van Engeland H, Durston S (2011) The neurobiology of repetitive behavior: of mice. Neurosci Biobehav Rev 35(3):345–355

    Article  PubMed  Google Scholar 

  • Lawrence AB, Terlouw EM (1993) A review of behavioral factors involved in the development and continued performance of stereotypic behaviors in pigs. J Anim Sci 71(10):2815–2825

    CAS  PubMed  Google Scholar 

  • Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32(10):2125–2134

    Article  CAS  PubMed  Google Scholar 

  • Lennox DB, Miltenberger RG, Donnelly DR (1987) Response interruption and DRL for the reduction of rapid eating. J Appl Behav Anal 20(3):279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CS, Morgan PT, Matuskey D, Abdelghany O, Luo X, Chang JL et al (2010) Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc Natl Acad Sci USA 107(32):14455–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liljeholm M, Tricomi E, O’Doherty JP, Balleine BW (2011) Neural correlates of instrumental contingency learning: differential effects of action-reward conjunction and disjunction. J Neurosci 31(7):2474–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren HS, Wickens R, Tait DS, Brown VJ, Dunnett SB (2013) Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 71:148–153

    Article  CAS  PubMed  Google Scholar 

  • Lipszyc J, Schachar R (2010) Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc 16(6):1064–1076

    Article  PubMed  Google Scholar 

  • Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10(2):276–291

    Article  CAS  PubMed  Google Scholar 

  • Lombardo LE, Bearden CE, Barrett J, Brumbaugh MS, Pittman B, Frangou S et al (2012) Trait impulsivity as an endophenotype for bipolar I disorder. Bipolar Disord 14(5):565–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Majid DS, Cai W, Corey-Bloom J, Aron AR (2013) Proactive selective response suppression is implemented via the basal ganglia. J Neurosci 33(33):13259–13269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359(20):2121–2134

    Article  CAS  PubMed  Google Scholar 

  • Mar AC, Walker AL, Theobald DE, Eagle DM, Robbins TW (2011) Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. J Neurosci 31(17):6398–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur JE (1987) The effect of delayed and intervening events on reinforcement value. In: Commons ML, Mazur JE, Nevin JA, Rachlin H (eds) An adjustment procedure for studying delayed reinforcement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503–507

    Article  CAS  PubMed  Google Scholar 

  • McClure SM, Ericson KM, Laibson DI, Loewenstein G, Cohen JD (2007) Time discounting for primary rewards. J Neurosci 27(21):5796–5804

    Article  CAS  PubMed  Google Scholar 

  • Menzies L, Achard S, Chamberlain SR, Fineberg N, Chen CH, del Campo N et al (2007) Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 130(Pt 12):3223–3236

    Article  PubMed  Google Scholar 

  • Millan MJ, Goodwin GM, Meyer-Lindenberg A (2015) Ove Ogren S. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol 25(5):599–656

    Article  CAS  PubMed  Google Scholar 

  • Milstein JA, Dalley JW, Robbins TW (2010) Methylphenidate-induced impulsivity: pharmacological antagonism by beta-adrenoreceptor blockade. J Psychopharmacol 24(3):309–321

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SH, Reeves JM, Li N, Phillips TJ (2006) Delay discounting predicts behavioral sensitization to ethanol in outbred WSC mice. Alcohol Clin Exp Res 30(3):429–437

    Article  PubMed  Google Scholar 

  • Miyasaki JM (2007) Al Hassan K, Lang AE, Voon V. Punding prevalence in Parkinson’s disease. Mov Disord 22(8):1179–1181

    Article  PubMed  Google Scholar 

  • Miyazaki K, Miyazaki KW, Doya K (2011) Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J Neurosci 31(2):469–479

    Article  CAS  PubMed  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 152(4):390–397

    Article  CAS  PubMed  Google Scholar 

  • Mole TB, Irvine MA, Worbe Y, Collins P, Mitchell SP, Bolton S, et al. (2014) Impulsivity in disorders of food and drug misuse. Psychol Med 2014:1–12

    Google Scholar 

  • Moreno M, Economidou D, Mar AC, Lopez-Granero C, Caprioli D, Theobald DE et al (2013) Divergent effects of D(2)/(3) receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats. Psychopharmacology 228(1):19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MJ, Impallomeni LC, Pirona A, Rogers RD (2006) Elevated impulsivity and impaired decision-making in abstinent Ecstasy (MDMA) users compared to polydrug and drug-naive controls. Neuropsychopharmacology 31(7):1562–1573

    Article  CAS  PubMed  Google Scholar 

  • Morris LS, Kundu P, Baek K, Irvine MA, Mechelmans DJ, Wood J et al (2015) Jumping the gun: mapping neural correlates of waiting impulsivity and relevance across alcohol misuse. Biol Psychiatry doi:10.1016/j.biopsych.2015.06.009

  • Muller UJ, Voges J, Steiner J, Galazky I, Heinze HJ, Moller M et al (2013) Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci 1282:119–128

    Article  PubMed  CAS  Google Scholar 

  • Nandam LS, Hester R, Wagner J, Cummins TD, Garner K, Dean AJ et al (2011) Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 69(9):902–904

    Article  CAS  PubMed  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z et al (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26(14):3805–3812

    Article  CAS  PubMed  Google Scholar 

  • Nelson AJ, Killcross S (2013) Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists. Front Neurosci 7:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM et al (2006) Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry 45(4):468–475

    Article  PubMed  Google Scholar 

  • Nilsson SR, Alsio J, Somerville EM, Clifton PG (2015) The rat’s not for turning: dissociating the psychological components of cognitive inflexibility. Neurosci Biobehav Rev 56:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191(3):507–520

    Article  CAS  PubMed  Google Scholar 

  • Noreika V, Falter CM, Rubia K (2013) Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia 51(2):235–266

    Article  PubMed  Google Scholar 

  • Nowakowska K, Jablkowska K, Borkowska A (2007) Cognitive dysfunctions in patients with alcohol dependence. Psychiatr Pol 41(5):693–702

    PubMed  Google Scholar 

  • Oberlin BG, Albrecht DS, Herring CM, Walters JW, Hile KL, Kareken DA et al (2015) Monetary discounting and ventral striatal dopamine receptor availability in nontreatment-seeking alcoholics and social drinkers. Psychopharmacology 232(12):2207–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeso I, Wilkinson L, Rodriguez-Oroz MC, Obeso JA, Jahanshahi M (2013) Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease. Exp Brain Res 226(3):451–462

    Article  PubMed  Google Scholar 

  • Oliveira FT, McDonald JJ, Goodman D (2007) Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations. J Cogn Neurosci 19(12):1994–2004

    Article  PubMed  Google Scholar 

  • Oliver YP, Ripley TL, Stephens DN (2009) Ethanol effects on impulsivity in two mouse strains: similarities to diazepam and ketamine. Psychopharmacology 204(4):679–692

    Article  CAS  PubMed  Google Scholar 

  • O’Neill M, Brown VJ (2007) The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiol Learn Mem 88(1):75–81

    Article  PubMed  CAS  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ et al (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23(2):113–126

    Article  CAS  PubMed  Google Scholar 

  • Otto AR, Gershman SJ, Markman AB, Daw ND (2013) The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol Sci 24(5):751–761

    Article  PubMed  Google Scholar 

  • Parker MO, Brock AJ, Sudwarts A, Brennan CH (2014) Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish. Psychopharmacology 231(13):2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson JC 2nd, Holland J, Middleton R (2006) Neuropsychological performance, impulsivity, and comorbid psychiatric illness in patients with pathological gambling undergoing treatment at the CORE inpatient treatment center. South Med J 99(1):36–43

    Article  PubMed  Google Scholar 

  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology 191(3):587–598

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Schetters D, Janssen MC, Wiskerke J, Schoffelmeer AN (2009) Acute effects of morphine on distinct forms of impulsive behavior in rats. Psychopharmacology 205(3):489–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelloux Y, Dilleen R, Economidou D, Theobald D, Everitt BJ (2012) Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37(11):2505–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena-Oliver Y, Giuliano C, Economidou D, Goodlett CR, Robbins TW, Dalley JW et al (2015) Alcohol-Preferring rats show goal oriented behaviour to food incentives but are neither sign-trackers nor impulsive. PLoS ONE 10(6):e0131016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry JC, Korner AC (2011) Impulsive phenomena, the impulsive character (der Triebhafte Charakter) and DSM personality disorders. J Pers Disord 25(5):586–606

    Article  PubMed  Google Scholar 

  • Perry JL, Larson EB, German JP, Madden GJ, Carroll ME (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology 178(2–3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Perry JL, Nelson SE, Carroll ME (2008) Impulsive choice as a predictor of acquisition of IV cocaine self- administration and reinstatement of cocaine-seeking behavior in male and female rats. Exp Clin Psychopharmacol 16(2):165–177

    Article  PubMed  Google Scholar 

  • Pine A, Shiner T, Seymour B, Dolan RJ (2010) Dopamine, time, and impulsivity in humans. J Neurosci 30(26):8888–8896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pothiyil DI, Alex J (2013) Self-regulation and set-shifting in alcohol dependence syndrome. Ind J Appl Res III(III)

    Google Scholar 

  • Poulos CX, Le AD, Parker JL (1995) Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behav Pharmacol 6(8):810–814

    Article  PubMed  Google Scholar 

  • Quednow BB, Kuhn KU, Hoppe C, Westheide J, Maier W, Daum I et al (2007) Elevated impulsivity and impaired decision-making cognition in heavy users of MDMA (“Ecstasy”). Psychopharmacology 189(4):517–530

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1990) A simple ordering of neocortical areas established by the compartmental organization of their striatal projections. Proc Natl Acad Sci USA 87(16):6196–6199

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds B, Schiffbauer R (2004) Measuring state changes in human delay discounting: an experiential discounting task. Behav Processes 67(3):343–356

    Article  PubMed  Google Scholar 

  • Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behavior in rats. Psychopharmacology 146(4):432–439

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163(3–4):362–380

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD (2012) Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 16(1):81–91

    Article  PubMed  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X et al (2008a) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33(5):1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Robinson ES, Dalley JW, Theobald DE, Glennon JC, Pezze MA, Murphy ER et al (2008b) Opposing roles for 5-HT2A and 5-HT2C receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neuropsychopharmacology 33(10):2398–2406

    Article  CAS  PubMed  Google Scholar 

  • Robinson ES, Eagle DM, Economidou D, Theobald DE, Mar AC, Murphy ER et al (2009) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res 196(2):310–316

    Article  CAS  PubMed  Google Scholar 

  • Roesch MR, Taylor AR, Schoenbaum G (2006) Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51(4):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G (2007) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci 27(1):245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12(1):142–162

    Article  CAS  PubMed  Google Scholar 

  • Rubio G, Jimenez M, Rodriguez-Jimenez R, Martinez I, Avila C, Ferre F et al (2008) The role of behavioral impulsivity in the development of alcohol dependence: a 4-year follow-up study. Alcohol Clin Exp Res 32(9):1681–1687

    Article  PubMed  Google Scholar 

  • Rylander G (1972) Psychoses and the punding and choreiform syndromes in addiction to central stimulant drugs. Psychiatr Neurol Neurochir 75(3):203–212

    CAS  PubMed  Google Scholar 

  • Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM (2015) Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol Psychiatry 77(10):903–911

    Article  PubMed  Google Scholar 

  • Sanchez-Roige S, Baro V, Trick L, Pena-Oliver Y, Stephens DN, Duka T (2014) Exaggerated waiting impulsivity associated with human binge drinking, and high alcohol consumption in mice. Neuropsychopharmacology 39:2919–2927

    Google Scholar 

  • Sanchez-Roige S, Baro V, Trick L, Pena-Oliver Y, Stephens DN, Duka T (2014b) Exaggerated waiting impulsivity associated with human binge drinking, and high alcohol consumption in mice. Neuropsychopharmacology 39(13):2919–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffers MK, Coles MG (2000) Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J Exp Psychol Hum Percept Perform 26(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Schel MA, Kuhn S, Brass M, Haggard P, Ridderinkhof KR, Crone EA (2014) Neural correlates of intentional and stimulus-driven inhibition: a comparison. Front Hum Neurosci 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. NeuroReport 13(6):885–890

    Article  PubMed  Google Scholar 

  • Schweighofer N, Bertin M, Shishida K, Okamoto Y, Tanaka SC, Yamawaki S et al (2008) Low-serotonin levels increase delayed reward discounting in humans. J Neurosci 28(17):4528–4532

    Article  CAS  PubMed  Google Scholar 

  • Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hagele C et al (2014) Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 70(2):122–131

    Article  CAS  PubMed  Google Scholar 

  • Sellitto M, Ciaramelli E, di Pellegrino G (2010) Myopic discounting of future rewards after medial orbitofrontal damage in humans. J Neurosci 30(49):16429–16436

    Article  CAS  PubMed  Google Scholar 

  • Sesia T, Temel Y, Lim LW, Blokland A, Steinbusch HW, Visser-Vandewalle V (2008) Deep brain stimulation of the nucleus accumbens core and shell: opposite effects on impulsive action. Exp Neurol 214(1):135–139

    Article  PubMed  Google Scholar 

  • Sesia T, Bulthuis V, Tan S, Lim LW, Vlamings R, Blokland A et al (2010) Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Exp Neurol 225(2):302–309

    Article  CAS  PubMed  Google Scholar 

  • Simon NW, Mendez IA, Setlow B (2007) Cocaine exposure causes long-term increases in impulsive choice. Behav Neurosci 121(3):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoerds Z, de Wit S, van den Brink W, Robbins TW, Beekman AT, Penninx BW et al (2013) Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Trans Psychiatry 3:e337

    Article  CAS  Google Scholar 

  • Smith JL, Mattick RP, Jamadar SD, Iredale JM (2014) Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend 145:1–33

    Article  PubMed  Google Scholar 

  • Smittenaar P, Guitart-Masip M, Lutti A, Dolan RJ (2013a) Preparing for selective inhibition within frontostriatal loops. J Neurosci 33(46):18087–18097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smittenaar P, FitzGerald TH, Romei V, Wright ND, Dolan RJ (2013b) Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron 80(4):914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonuga-Barke EJ, Taylor E, Sembi S, Smith J (1992) Hyperactivity and delay aversion-I. The effect of delay on choice. J Child Psychol Psychiatry 33(2):387–398

    Article  CAS  PubMed  Google Scholar 

  • Stein DJ, Hollander E (1995) Obsessive-compulsive spectrum disorders. J Clin Psychiatry 56(6):265–266

    CAS  PubMed  Google Scholar 

  • Stern ER, Gonzalez R, Welsh RC, Taylor SF (2010) Updating beliefs for a decision: neural correlates of uncertainty and underconfidence. J Neurosci 30(23):8032–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Cocker PJ, Zeeb FD, Winstanley CA (2012) Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology 219(2):285–301

    Article  CAS  PubMed  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ et al (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder(OCD): form and control. BMC Neurosci 2:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tait DS, Chase EA, Brown VJ (2014) Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results. Curr Pharm Des 20(31):5046–5059

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7(8):887–893

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SC, Balleine BW, O’Doherty JP (2008) Calculating consequences: brain systems that encode the causal effects of actions. J Neurosci 28(26):6750–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD (1989) Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol 17(5):473–491

    Article  CAS  PubMed  Google Scholar 

  • Tarter RE (1973) An analysis of cognitive deficits in chronic alcoholics. J Nerv Ment Dis 157(2):138–147

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson A, Grayson B, Marsh S, Harte MK, Barnes SA, Marshall KM et al (2014) Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats. Eur Neuropsychopharmacol 24(8):1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Toomey R, Lyons MJ, Eisen SA, Xian H, Chantarujikapong S, Seidman LJ et al (2003) A twin study of the neuropsychological consequences of stimulant abuse. Arch Gen Psychiatry 60(3):303–310

    Article  PubMed  Google Scholar 

  • Townshend JM, Kambouropoulos N, Griffin A, Hunt FJ, Milani RM (2014) Binge drinking, reflection impulsivity, and unplanned sexual behavior: impaired decision-making in young social drinkers. Alcohol Clin Exp Res 38(4):1143–1150

    Article  PubMed  Google Scholar 

  • Tricomi E, Balleine BW, O’Doherty JP (2009) A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci 29(11):2225–2232

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural substrates of goal-directed learning in the human brain. J Neurosci 27(15):4019–4026

    Article  CAS  PubMed  Google Scholar 

  • van den Hout MA, Engelhard IM, Smeets M, Dek EC, Turksma K, Saric R (2009) Uncertainty about perception and dissociation after compulsive-like staring: time course of effects. Behav Res Ther 47(6):535–539

    Article  PubMed  Google Scholar 

  • van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60(1):66–73

    Article  PubMed  CAS  Google Scholar 

  • van Holstein M, Aarts E, van der Schaaf ME, Geurts DE, Verkes RJ, Franke B et al (2011) Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology 218(3):567–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanes LD, van Holst RJ, Jansen JM, van den Brink W, Oosterlaan J, Goudriaan AE (2014) Contingency learning in alcohol dependence and pathological gambling: learning and unlearning reward contingencies. Alcohol Clin Exp Res 38(6):1602–1610

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Logan GD (2009) Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33(5):647–661

    Article  PubMed  Google Scholar 

  • Verdejo-Garcia A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32(4):777–810

    Article  PubMed  Google Scholar 

  • Volans PJ (1976) Styles of decision-making and probability appraisal in selected obsessional and phobic patients. Br J Soc Clin Psychol 15(3):305–317

    Article  CAS  PubMed  Google Scholar 

  • Vollstadt-Klein S, Wichert S, Rabinstein J, Buhler M, Klein O, Ende G et al (2010) Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105(10):1741–1749

    Article  PubMed  Google Scholar 

  • Voon V (2004) Repetition, repetition, and repetition: compulsive and punding behaviors in Parkinson’s disease. Mov Disord 19(4):367–370

    Article  PubMed  Google Scholar 

  • Voon V (2014) Models of impulsivity with a focus on waiting impulsivity: translational potential for neuropsychiatric disorders. Current Addict Rep 1(4):281–288

    Article  Google Scholar 

  • Voon V (2015) Cognitive biases in binge eating disorder: the hijacking of decision making. CNS Spectrums

    Google Scholar 

  • Voon V, Schoerling A, Wenzel S, Ekanayake V, Reiff J, Trenkwalder C et al (2011) Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome. BMC Neurol 11:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voon V, Irvine MA, Derbyshire K, Worbe Y, Lange I, Abbott S et al (2014) Measuring “waiting” impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol Psychiatry 75(2):148–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Voon V, Chang-Webb YC, Morris LS, Cooper E, Sethi A, Baek K, et al (2015) Waiting impulsivity: the influence of acute methylphenidate and feedback. Int J Neuropsychopharmacol doi:10.1093/ijnp/pyv074

    Google Scholar 

  • Voon V, Derbyshire K, Ruck C, Irvine MA, Worbe Y, Enander J et al (2015b) Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Voon V, Baek K, Enander J, Worbe Y, Morris LS, Harrison NA, et al (2015) Motivation and value influences in the relative balance of goal-directed and habitual behaviours in obsessive-compulsive disorder. Trans Psychiatry

    Google Scholar 

  • Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology 150(1):90–101

    Article  CAS  PubMed  Google Scholar 

  • Walker SE, Pena-Oliver Y, Stephens DN (2011) Learning not to be impulsive: disruption by experience of alcohol withdrawal. Psychopharmacology 217(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Watkins LH, Sahakian BJ, Robertson MM, Veale DM, Rogers RD, Pickard KM et al (2005) Executive function in Tourette’s syndrome and obsessive-compulsive disorder. Psychol Med 35(4):571–582

    Article  PubMed  Google Scholar 

  • Weijers H-G, Wiesbeck GA, Böning J (2001) Reflection-impulsivity, personality and performance: a psychometric and validity study of the Matching Familiar Figures Test in detoxified alcoholics. Pers Individ Differ 31(5):731–754

    Article  Google Scholar 

  • Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD et al (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448(7156):894–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2003) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology 170(3):320–331

    Article  CAS  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004a) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology 176(3–4):376–385

    Article  CAS  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004b) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24(20):4718–4722

    Article  CAS  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology. 30(4):669–682

    CAS  PubMed  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26(4):379–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiskerke J, Schetters D, van Es IE, van Mourik Y, den Hollander BR, Schoffelmeer AN et al (2011) mu-Opioid receptors in the nucleus accumbens shell region mediate the effects of amphetamine on inhibitory control but not impulsive choice. J Neurosci 31(1):262–272

    Article  CAS  PubMed  Google Scholar 

  • Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW (2014) Serotonin depletion induces ‘waiting impulsivity’ on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 39(6):1519–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • Worbe Y, Savulich G, de Wit S, Fernandez-Egea E, Robbins TW (2015) Tryptophan depletion promotes habitual over goal-directed control of appetitive responding in humans. Int J Neuropsychopharmacol 18(10):pyv013

    Google Scholar 

  • Worbe Y, Palminteri S, Savulich G, Daw ND, Fernandez-Egea E, Robbins TW et al (2015) Valence-dependent influence of serotonin depletion on model-based choice strategy. Mol Psychiatry

    Google Scholar 

  • Wu M, Brockmeyer T, Hartmann M, Skunde M, Herzog W, Friederich HC (2014) Set-shifting ability across the spectrum of eating disorders and in overweight and obesity: a systematic review and meta-analysis. Psychol Med 44(16):3365–3385

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich K, Dayan P, Dolan RJ (2012) Mapping value based planning and extensively trained choice in the human brain. Nat Neurosci 15(5):786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie SA, van den Wildenberg WP, Ridderinkhof KR, Bashore TR, Powell VD, Manning CA et al (2009) The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia 47(8–9):1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22(2):513–523

    Article  PubMed  Google Scholar 

  • Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS ONE 5(11):e13848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeeb FD, Robbins TW, Winstanley CA (2009) Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology 34(10):2329–2343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VV is a Wellcome Trust Fellow and supported by the Wellcome Trust (093705/Z/10/Z). JD acknowledges funding support from the Medical Research Council (G0701500; G0802729). The Behavioural and Clinical Neuroscience Institute (BCNI) at Cambridge University is supported by a joint award from the Medical Research Council (G1000183) and Wellcome Trust (093875/Z/10/Z). We would like to thank Laurel Morris for fronto-striatal connectivity illustrations shown in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Voon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voon, V., Dalley, J.W. (2015). Translatable and Back-Translatable Measurement of Impulsivity and Compulsivity: Convergent and Divergent Processes. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5013

Download citation

Publish with us

Policies and ethics