Skip to main content

Attentional Set-Shifting Across Species

  • Chapter

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

Attentional set-shifting, as a measure of executive flexibility, has been a staple of investigations into human cognition for over six decades. Mediated by the frontal cortex in mammals, the cognitive processes involved in forming, maintaining and shifting an attentional set are vulnerable to dysfunction arising from a number of human neurodegenerative diseases (such as Alzheimer’s, Parkinson’s and Huntington’s diseases) and other neurological disorders (such as schizophrenia, depression, and attention deficit/hyperactivity disorder). Our understanding of these diseases and disorders, and the cognitive impairments induced by them, continues to advance, in tandem with an increasing number of tools at our disposal. In this chapter, we review and compare commonly used attentional set-shifting tasks (the Wisconsin Card Sorting Task and Intradimensional/Extradimensional tasks) and their applicability across species. In addition to humans, attentional set-shifting has been observed in a number of other animals, with a substantial body of literature describing performance in monkeys and rodents. We consider the task designs used to investigate attentional set-shifting in these species and the methods used to model human diseases and disorders, and ultimately the comparisons and differences between species-specific tasks, and between performance across species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antshel KM, Faraone SV, Maglione K, Doyle AE, Fried R, Seidman LJ, Biederman J (2010) Executive functioning in high-IQ adults with ADHD. Psychol Med 40(11):1909–1918. doi:10.1017/S0033291709992273

    Article  CAS  PubMed  Google Scholar 

  • Asari T, Konishi S, Jimura K, Miyashita Y (2005) Multiple components of lateral posterior parietal activation associated with cognitive set shifting. Neuroimage 26(3):694–702

    Article  PubMed  Google Scholar 

  • Austin MP, Mitchell P, Wilhelm K, Parker G, Hickie I, Brodaty H, Chan J, Eyers K, Milic M, Hadzi-Pavlovic D (1999) Cognitive function in depression: a distinct pattern of frontal impairment in melancholia? Psychol Med 29(1):73–85

    Article  CAS  PubMed  Google Scholar 

  • Barcelo F, Knight RT (2002) Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia 40(3):349–356

    Article  PubMed  Google Scholar 

  • Barch DM, Braver TS, Carter CS, Poldrack RA, Robbins TW (2009) CNTRICS final task selection: executive control. Schizophr Bull 35(1):115–135. doi:sbn154 [pii] 10.1093/schbul/sbn154

  • Barense MD, Fox MT, Baxter MG (2002) Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem 9(4):191–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett JH, Robbins TW, Leeson VC, Sahakian BJ, Joyce EM, Blackwell AD (2010) Assessing cognitive function in clinical trials of schizophrenia. Neurosci Biobehav Rev 34(8):1161–1177. doi:10.1016/j.neubiorev.2010.01.012

    Article  PubMed  Google Scholar 

  • Baxter MG, Gaffan D (2007) Asymmetry of attentional set in rhesus monkeys learning colour and shape discriminations. Q J Exp Psychol (Colchester) 60(1):1–8

    Article  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psych 39:15–22

    Article  CAS  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

    CAS  PubMed  Google Scholar 

  • Bissonette GB, Powell EM (2012) Reversal learning and attentional set-shifting in mice. Neuropharmacology 62(3):1168–1174. doi:10.1016/j.neuropharm.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  • Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28(44):11124–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissonette GB, Lande MD, Martins GJ, Powell EM (2012) Versatility of the mouse reversal/set-shifting test: effects of topiramate and sex. Physiol Behav 107(5):781–786. doi:10.1016/j.physbeh.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissonette GB, Bae MH, Suresh T, Jaffe DE, Powell EM (2014) Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res 259:143–151. doi:10.1016/j.bbr.2013.10.051

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403. doi:10.1016/S0140-6736(06)69113-7

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618. doi:10.1155/2012/845618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33(2):320–331

    Article  CAS  PubMed  Google Scholar 

  • Bonte E, Flemming T, Fagot J (2011) Executive control of perceptual features and abstract relations by baboons (Papio papio). Behav Brain Res 222(1):176–182. doi:10.1016/j.bbr.2011.03.034

    Article  PubMed  Google Scholar 

  • Borkowska A, Rybakowski JK (2001) Neuropsychological frontal lobe tests indicate that bipolar depressed patients are more impaired than unipolar. Bipolar Disord 3(2):88–94

    Article  CAS  PubMed  Google Scholar 

  • Braw Y, Bloch Y, Mendelovich S, Ratzoni G, Gal G, Harari H, Tripto A, Levkovitz Y (2008) Cognition in young schizophrenia outpatients: Comparison of first-episode with multiepisode patients. Schizophr Bull 34(3):544–554. doi:10.1093/schbul/sbm115

    Article  PubMed  Google Scholar 

  • Brigman JL, Bussey TJ, Saksida LM, Rothblat LA (2005) Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav Neurosci 119(3):839–842

    Article  PubMed  Google Scholar 

  • Broberg BV, Dias R, Glenthoj BY, Olsen CK (2008) Evaluation of a neurodevelopmental model of schizophrenia–early postnatal PCP treatment in attentional set-shifting. Behav Brain Res 190(1):160–163

    Article  CAS  PubMed  Google Scholar 

  • Broberg BV, Glenthoj BY, Dias R, Larsen DB, Olsen CK (2009) Reversal of cognitive deficits by an ampakine (CX516) and sertindole in two animal models of schizophrenia—sub-chronic and early postnatal PCP treatment in attentional set-shifting. Psychopharmacology 206(4):631–640

    Article  CAS  PubMed  Google Scholar 

  • Brooks SP, Betteridge H, Trueman RC, Jones L, Dunnett SB (2006) Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington’s disease. Brain Res Bull 69(4):452–457

    Article  CAS  PubMed  Google Scholar 

  • Brooks JM, Pershing ML, Thomsen MS, Mikkelsen JD, Sarter M, Bruno JP (2012a) Transient inactivation of the neonatal ventral hippocampus impairs attentional set-shifting behavior: reversal with an alpha7 nicotinic agonist. Neuropsychopharmacology 37(11):2476–2486. doi:10.1038/npp.2012.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks SP, Janghra N, Higgs GV, Bayram-Weston Z, Heuer A, Jones L, Dunnett SB (2012b) Selective cognitive impairment in the YAC128 Huntington’s disease mouse. Brain Res Bull 88(2–3):121–129. doi:10.1016/j.brainresbull.2011.05.010

    Article  PubMed  Google Scholar 

  • Brown TA, Barlow DH (1992) Comorbidity among anxiety disorders: implications for treatment and DSM-IV. J Consult Clin Psychol 60(6):835–844

    Article  CAS  PubMed  Google Scholar 

  • Brown VJ, Tait DS (2010) Behavioral flexibility: attentional shifting, rule switching and response reversal

    Google Scholar 

  • Brown RG, Redondo-Verge L, Chacon JR, Lucas ML, Channon S (2001) Dissociation between intentional and incidental sequence learning in Huntington’s disease. Brain 124(Pt 11):2188–2202

    Article  CAS  PubMed  Google Scholar 

  • Buchsbaum BR, Greer S, Chang WL, Berman KF (2005) Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp 25(1):35–45. doi:10.1002/hbm.20128

    Article  PubMed  Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 111(5):920–936

    Article  CAS  PubMed  Google Scholar 

  • Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO, Revheim N, Silipo G, Javitt DC (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62(5):495–504. doi:10.1001/archpsyc.62.5.495

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao AH, Yu L, Wang YW, Wang JM, Yang LJ, Lei GF (2012) Effects of methylphenidate on attentional set-shifting in a genetic model of attention-deficit/hyperactivity disorder. Behav Brain Funct 8(1):10. doi:10.1186/1744-9081-8-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceaser AE, Goldberg TE, Egan MF, McMahon RP, Weinberger DR, Gold JM (2008) Set-shifting ability and schizophrenia: a marker of clinical illness or an intermediate phenotype? Biol Psychiatry 64(9):782–788. doi:S0006-3223(08)00640-9 [pii] 10.1016/j.biopsych.2008.05.009

  • Chamberlain SR, Robbins TW, Winder-Rhodes S, Muller U, Sahakian BJ, Blackwell AD, Barnett JH (2011) Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry 69(12):1192–1203. doi:10.1016/j.biopsych.2010.08.019

    Article  PubMed  Google Scholar 

  • Chan AW, Xu Y, Jiang J, Rahim T, Zhao D, Kocerha J, Chi T, Moran S, Engelhardt H, Larkin K, Neumann A, Cheng H, Li C, Nelson K, Banta H, Zola SM, Villinger F, Yang J, Testa CM, Mao H, Zhang X, Bachevalier J (2014) A two years longitudinal study of a transgenic Huntington disease monkey. BMC neuroscience 15:36. doi:10.1186/1471-2202-15-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chase EA, Tait DS, Brown VJ (2012) Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur J Neurosci 36(3):2368–2375. doi:10.1111/j.1460-9568.2012.08141.x

    Article  PubMed  Google Scholar 

  • Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59(12):1180–1188. doi:10.1016/j.biopsych.2006.02.024

    Article  CAS  PubMed  Google Scholar 

  • Cheng JT, Li JS (2013) Intra-orbitofrontal cortex injection of haloperidol removes the beneficial effect of methylphenidate on reversal learning of spontaneously hypertensive rats in an attentional set-shifting task. Behav Brain Res 239:148–154. doi:10.1016/j.bbr.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y (2011) Animal models of prefrontal-executive function. Behav Neurosci 125(3):327–343. doi:2011-10778-002 [pii] 10.1037/a0023766

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25(2):532–538

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan EV (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114(Pt 5):2095–2122

    Article  PubMed  Google Scholar 

  • Corbett BA, Constantine LJ, Hendren R, Rocke D, Ozonoff S (2009) Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Res 166(2–3):210–222. doi:10.1016/j.psychres.2008.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Crofts HS, Dalley JW, Collins P, Van Denderen JC, Everitt BJ, Robbins TW, Roberts AC (2001) Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 11(11):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784

    Article  CAS  PubMed  Google Scholar 

  • Danet M, Lapiz-Bluhm S, Morilak DA (2010) A cognitive deficit induced in rats by chronic intermittent cold stress is reversed by chronic antidepressant treatment. Int J Neuropsychopharmacol 13(8):997–1009. doi:S1461145710000039 [pii] 10.1017/S1461145710000039

  • Davidson RJ, Pizzagalli D, Nitschke JB, Putnam K (2002) Depression: perspectives from affective neuroscience. Annu Rev Psychol 53:545–574. doi:10.1146/annurev.psych.53.100901.135148

    Article  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2004) Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur J Neurosci 20(5):1371–1378. doi:10.1111/j.1460-9568.2004.03586.x

    Article  CAS  PubMed  Google Scholar 

  • Demakis GJ (2003) A meta-analytic review of the sensitivity of the Wisconsin Card Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology 17(2):255–264

    Article  PubMed  Google Scholar 

  • Deschenes A, Goulet S, Dore FY (2006) Rule shift under long-term PCP challenge in rats. Behav Brain Res 167(1):134–140

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380(6569):69–72

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci 17(23):9285–9297

    CAS  PubMed  Google Scholar 

  • Dorion AA, Sarazin M, Hasboun D, Hahn-Barma V, Dubois B, Zouaoui A, Marsault C, Duyme M (2002) Relationship between attentional performance and corpus callosum morphometry in patients with Alzheimer’s disease. Neuropsychologia 40(7):946–956

    Article  PubMed  Google Scholar 

  • Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia 27(11–12):1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Drewe EA (1974) The effect of type and area of brain lesion on Wisconsin card sorting test performance. Cortex (a journal devoted to the study of the nervous system and behavior) 10(2):159–170

    Article  CAS  Google Scholar 

  • Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005) Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology 179(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Egerton A, Reid L, McGregor S, Cochran SM, Morris BJ, Pratt JA (2008) Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology 198(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Eimas PD (1966) Effects of overtraining and age on intradimensional and extradimensional shifts in children. J Exp Child Psychol 3(4):348–355

    Article  CAS  PubMed  Google Scholar 

  • Elliott R, McKenna PJ, Robbins TW, Sahakian BJ (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25(3):619–630

    Article  CAS  PubMed  Google Scholar 

  • Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ (2007) Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology 32(2):483–492

    Article  CAS  PubMed  Google Scholar 

  • Featherstone RE, Rizos Z, Kapur S, Fletcher PJ (2008) A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 189(1):170–179

    Article  CAS  PubMed  Google Scholar 

  • Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29(11):2052–2064

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 183(2):190–200

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190(1):85–96

    Article  PubMed  Google Scholar 

  • Flowers KA, Robertson C (1985) The effect of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry 48(6):517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossati P, Ergis AM, Allilaire JF (2001) Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the California sorting tests. Psychiatry Res 104(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Fox MT, Barense MD, Baxter MG (2003) Perceptual attentional set-shifting is impaired in rats with neurotoxic lesions of posterior parietal cortex. J Neurosci 23(2):676–681

    CAS  PubMed  Google Scholar 

  • Frodl T, Schaub A, Banac S, Charypar M, Jager M, Kummler P, Bottlender R, Zetzsche T, Born C, Leinsinger G, Reiser M, Moller HJ, Meisenzahl EM (2006) Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci 31(5):316–323

    PubMed  PubMed Central  Google Scholar 

  • Garner WR (1978) Selective attention to attributes and to stimuli. J Exp Psychol Gen 107(3):287–308

    Article  CAS  PubMed  Google Scholar 

  • Garner JP, Thogerson CM, Wurbel H, Murray JD, Mench JA (2006) Animal neuropsychology: validation of the intra-dimensional extra-dimensional set shifting task for mice. Behav Brain Res 173(1):53–61

    Article  PubMed  Google Scholar 

  • Gauntlett-Gilbert J, Roberts RC, Brown VJ (1999) Mechanisms underlying attentional set-shifting in Parkinson’s disease. Neuropsychologia 37(5):605–616

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1941) A critical review of the concept of set in contemporary experimental psychology. Psychol Bull 38(9):781–817

    Article  Google Scholar 

  • Gilmour G, Arguello A, Bari A, Brown VJ, Carter C, Floresco SB, Jentsch DJ, Tait DS, Young JW, Robbins TW (2013) Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research. Neurosci Biobehav Rev 37(9 Pt B):2125–2140. doi:10.1016/j.neubiorev.2012.04.006

  • Glickstein SB, Desteno DA, Hof PR, Schmauss C (2005) Mice lacking dopamine D2 and D3 receptors exhibit differential activation of prefrontal cortical neurons during tasks requiring attention. Cereb Cortex 15(7):1016–1024. doi:10.1093/cercor/bhh202

    Article  PubMed  Google Scholar 

  • Goetghebeur P, Dias R (2009) Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat-a back translational study. Psychopharmacology 202(1–3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MC, Mostofsky SH, Cutting LE, Mahone EM, Astor BC, Denckla MB, Landa RJ (2005) Subtle executive impairment in children with autism and children with ADHD. J Autism Dev Disord 35(3):279–293

    Article  CAS  PubMed  Google Scholar 

  • Grant DA, Berg EA (1948) A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J Exp Psychol 38(4):404–411

    Article  CAS  PubMed  Google Scholar 

  • Hampshire A, Owen AM (2006) Fractionating attentional control using event-related fMRI. Cereb Cortex 16(12):1679–1689. doi:10.1093/cercor/bhj116

    Article  PubMed  Google Scholar 

  • Haut MW, Cahill J, Cutlip WD, Stevenson JM, Makela EH, Bloomfield SM (1996) On the nature of Wisconsin Card Sorting Test performance in schizophrenia. Psychiatry Res 65(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Heaton RK (1993) Wisconsin Card Sorting Test (WCST) (rev. and expanded. edn). Psychological Assessment Resources, Odessa

    Google Scholar 

  • Hedou G, Homberg J, Feldon J, Heidbreder CA (2001) Expression of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 40(3):366–382

    Article  CAS  PubMed  Google Scholar 

  • Hervey AS, Epstein JN, Curry JF (2004) Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review. Neuropsychology 18(3):485–503. doi:10.1037/0894-4105.18.3.485

    Article  PubMed  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104(36):14501–14506. doi:10.1073/pnas.0704774104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilti CC, Delko T, Orosz AT, Thomann K, Ludewig S, Geyer MA, Vollenweider FX, Feldon J, Cattapan-Ludewig K (2010) Sustained attention and planning deficits but intact attentional set-shifting in neuroleptic-naive first-episode schizophrenia patients. Neuropsychobiology 61(2):79–86. doi:000265133 [pii] 10.1159/000265133

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562. doi:10.1093/schbul/sbp006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutton SB, Puri BK, Duncan LJ, Robbins TW, Barnes TR, Joyce EM (1998) Executive function in first-episode schizophrenia. Psychol Med 28(2):463–473

    Article  CAS  PubMed  Google Scholar 

  • Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412(2):191–209. doi:10.1042/BJ20071619

    Article  CAS  PubMed  Google Scholar 

  • Jazbec S, Pantelis C, Robbins T, Weickert T, Weinberger DR, Goldberg TE (2007) Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: impact of distractors. Schizophr Res 89(1–3):339–349. doi:S0920-9964(06)00346-X [pii] 10.1016/j.schres.2006.08.014

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20(3):201–225

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Elsworth JD, Redmond DE Jr, Roth RH (1997a) Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci 17(5):1769–1775

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997b) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277(5328):953–955

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Tran A, Le D, Youngren KD, Roth RH (1997c) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 17(2):92–99

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Tran A, Taylor JR, Roth RH (1998) Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: behavioral and neurochemical evidence. Psychopharmacology 138(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Joel D, Weiner I, Feldon J (1997) Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 85(2):187–201

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RT (1956) Discrimination learning as a function of reversal and nonreversal shifts. J Exp Psychol 51(6):379–384

    Article  CAS  PubMed  Google Scholar 

  • Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C (1999) Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 29(3):527–538

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431. doi:S1074-7427(11)00142-0 [pii] 10.1016/j.nlm.2011.07.002

  • Konishi S, Kawazu M, Uchida I, Kikyo H, Asakura I, Miyashita Y (1999) Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cereb Cortex 9(7):745–753

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Hayashi T, Uchida I, Kikyo H, Takahashi E, Miyashita Y (2002) Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proc Natl Acad Sci USA 99(11):7803–7808. doi:10.1073/pnas.122644899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi S, Hirose S, Jimura K, Chikazoe J, Watanabe T, Kimura HM, Miyashita Y (2010) Medial prefrontal activity during shifting under novel situations. Neurosci Lett 484(3):182–186. doi:10.1016/j.neulet.2010.08.047

    Article  CAS  PubMed  Google Scholar 

  • LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harbor Perspect Med 2(11). doi:10.1101/cshperspect.a006320

  • Lange KW, Sahakian BJ, Quinn NP, Marsden CD, Robbins TW (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry 58(5):598–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange KW, Reichl S, Lange KM, Tucha L, Tucha O (2010) The history of attention deficit hyperactivity disorder. Attention Deficit Hyperactivity Disorders 2(4):241–255. doi:10.1007/s12402-010-0045-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapiz-Bluhm MD, Soto-Pina AE, Hensler JG, Morilak DA (2009) Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology 202(1–3):329–341. doi:10.1007/s00213-008-1224-6

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119(Pt 5):1633–1645

    Article  PubMed  Google Scholar 

  • Lawrence AD, Hodges JR, Rosser AE, Kershaw A, ffrench-Constant C, Rubinsztein DC, Robbins TW, Sahakian BJ (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121(Pt 7):1329–1341

    Google Scholar 

  • Lawrence AD, Sahakian BJ, Rogers RD, Hodge JR, Robbins TW (1999) Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia 37(12):1359–1374

    Article  CAS  PubMed  Google Scholar 

  • Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR, Joyce EM (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66(6):586–593. doi:S0006-3223(09)00628-3 [pii] 10.1016/j.biopsych.2009.05.016

  • Lindgren HS, Wickens R, Tait DS, Brown VJ, Dunnett SB (2013) Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 71:148–153. doi:10.1016/j.neuropharm.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26(30):7870–7874

    Article  CAS  PubMed  Google Scholar 

  • Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125(Pt 3):624–639

    Article  PubMed  Google Scholar 

  • Mattes R, Cohen R, Berg P, Canavan AG, Hopmann G (1991) Slow cortical potentials (SCPS) in schizophrenic patients during performance of the Wisconsin card-sorting test (WCST). Neuropsychologia 29(2):195–205

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146(1–2):97–103

    Article  PubMed  Google Scholar 

  • McGaughy J, Ross RS, Eichenbaum H (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153(1):63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta MA, Goodyer IM, Sahakian BJ (2004) Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry 45(2):293–305

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi:10.1146/annurev.neuro.24.1.167 24/1/167 [pii]

  • Milner B (1963) Effect of different brain lesions on card sorting. Arch Neurol 9:90–100

    Article  Google Scholar 

  • Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21(19):7733–7741

    CAS  PubMed  Google Scholar 

  • Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB (2005) A non-human primate test of abstraction and set shifting: an automated adaptation of the Wisconsin Card Sorting Test. J Neurosci Methods 146(2):165–173

    Article  PubMed  Google Scholar 

  • Moritz S, Birkner C, Kloss M, Jahn H, Hand I, Haasen C, Krausz M (2002) Executive functioning in obsessive-compulsive disorder, unipolar depression, and schizophrenia. Arch Clin Neuropsychol 17(5):477–483

    PubMed  Google Scholar 

  • Nagahama Y, Okina T, Suzuki N, Matsuzaki S, Yamauchi H, Nabatame H, Matsuda M (2003) Factor structure of a modified version of the wisconsin card sorting test: an analysis of executive deficit in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 16(2):103–112. doi:10.1159/000070683

    Article  PubMed  Google Scholar 

  • Nagahama Y, Okina T, Suzuki N, Nabatame H, Matsuda M (2005) The cerebral correlates of different types of perseveration in the Wisconsin Card Sorting Test. J Neurol Neurosurg Psychiatry 76(2):169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CW, Noblejas MI, Rodefer JS, Smith CB, Poremba A (2007) Double dissociation of attentional resources: prefrontal versus cingulate cortices. J Neurosci 27(45):12123–12131

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenstein MR, Aleman A, de Haan EH (2001) Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. Wisconsin Card Sorting Test. Continuous Performance Test. J Psychiatr Res 35(2):119–125

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Popik P (2011) Long-lasting cognitive deficit induced by stress is alleviated by acute administration of antidepressants. Psychoneuroendocrinology 36(1):28–39. doi:10.1016/j.psyneuen.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, Essock S, Fenton WS, Frese FJ 3rd, Gold JM, Goldberg T, Heaton RK, Keefe RS, Kraemer H, Mesholam-Gately R, Seidman LJ, Stover E, Weinberger DR, Young AS, Zalcman S, Marder SR (2008) The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165(2):203–213. doi:10.1176/appi.ajp.2007.07010042

    Article  PubMed  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH (2012) Modeling depression in animal models. Methods Mol Biol 829:125–144. doi:10.1007/978-1-61779-458-2_7

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29(10):993–1006

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115(Pt 6):1727–1751

    Article  PubMed  Google Scholar 

  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116(Pt 5):1159–1175

    Article  PubMed  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37(3):251–270. S092099649800156X [pii]

    Google Scholar 

  • Paolo AM, Troster AI, Axelrod BN, Koller WC (1995) Construct validity of the WCST in normal elderly and persons with Parkinson’s disease. Arch Clin Neuropsychol 10(5):463–473

    Article  CAS  PubMed  Google Scholar 

  • Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28(35):8709–8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinemann A, Schuller S, Pohl C, Jahn T, Weindl A, Kassubek J (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239(1):11–19. doi:10.1016/j.jns.2005.07.007

    Article  PubMed  Google Scholar 

  • Perry RJ, Watson P, Hodges JR (2000) The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38(3):252–271

    Article  CAS  PubMed  Google Scholar 

  • Pineda D, Ardila A, Rosselli M, Cadavid C, Mancheno S, Mejia S (1998) Executive dysfunctions in children with attention deficit hyperactivity disorder. Int J Neurosci 96(3–4):177–196

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Detrick S, Kesner RP (1999) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19(11):4585–4594

    CAS  PubMed  Google Scholar 

  • Rapport LJ, Van Voorhis A, Tzelepis A, Friedman SR (2001) Executive functioning in adult attention-deficit hyperactivity disorder. Clin Neuropsychol 15(4):479–491. doi:10.1076/clin.15.4.479.1878

    Article  CAS  PubMed  Google Scholar 

  • Ridderinkhof KR, Span MM, van der Molen MW (2002) Perseverative behavior and adaptive control in older adults: performance monitoring, rule induction, and set shifting. Brain Cogn 49(3):382–401

    Article  PubMed  Google Scholar 

  • Riehemann S, Volz HP, Stutzer P, Smesny S, Gaser C, Sauer H (2001) Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test—a fMRI study. Eur Arch Psychiatry Clin Neurosci 251(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ (1988) The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q J Exp Psychol B 40(4):321–341

    CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ, Muir JL (1992) A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in marmosets. Neuroscience 47(2):251–264

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14(5 Pt 1):2531–2544

    CAS  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN (2008) Naltrexone reverses age-induced cognitive deficits in rats. Neurobiol Aging 29(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21(4):1070–1076

    Article  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J (2008) Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by Sertindole and a 5-HT(6) receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33(11):2657–2666

    Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12(1):142–162

    Article  CAS  PubMed  Google Scholar 

  • Romine CB, Lee D, Wolfe ME, Homack S, George C, Riccio CA (2004) Wisconsin Card Sorting Test with children: a meta-analytic study of sensitivity and specificity. Arch Clin Neuropsychol 19(8):1027–1041

    Article  PubMed  Google Scholar 

  • Roth BL, Hanizavareh SM, Blum AE (2004) Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology 174(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Sahakian BJ, Owen AM (1992) Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med 85(7):399–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahakian BJ, Downes JJ, Eagger S, Evenden JL, Levy R, Philpot MP, Roberts AC, Robbins TW (1990) Sparing of attentional relative to mnemonic function in a subgroup of patients with dementia of the Alzheimer type. Neuropsychologia 28(11):1197–1213

    Article  CAS  PubMed  Google Scholar 

  • Scheggia D, Bebensee A, Weinberger DR, Papaleo F (2014) The ultimate intra-/extra-dimensional attentional set-shifting task for mice. Biol Psychiatry 75(8):660–670. doi:10.1016/j.biopsych.2013.05.021

    Article  PubMed  Google Scholar 

  • Seidman LJ, Biederman J, Faraone SV, Weber W, Ouellette C (1997) Toward defining a neuropsychology of attention deficit-hyperactivity disorder: performance of children and adolescents from a large clinically referred sample. J Consult Clin Psychol 65(1):150–160

    Article  CAS  PubMed  Google Scholar 

  • Settlage P, Butler R, Odoi H (1956) Perseverative interface in monkeys following bilateral removal of the prefrontal areas. J Gen Psych 54:255–262

    Google Scholar 

  • Shepp BE, Eimas PD (1964) Intradimensional and extradimensional shifts in the rat. J Comp Physiol Psychol 57:357–361

    Article  CAS  PubMed  Google Scholar 

  • Shepp BE, Schrier AM (1969) Consecutive intradimensional and extradimensional shifts in monkeys. J Comp Physiol Psychol 67(2):199–203

    Article  Google Scholar 

  • Silva KL, Rovaris DL, Guimaraes-da-Silva PO, Victor MM, Salgado CA, Vitola ES, Contini V, Bertuzzi G, Picon FA, Karam RG, Belmonte-de-Abreu P, Rohde LA, Grevet EH, Bau CH (2014) Could comorbid bipolar disorder account for a significant share of executive function deficits in adults with attention-deficit hyperactivity disorder? Bipolar Disord 16(3):270–276. doi:10.1111/bdi.12158

    Article  PubMed  Google Scholar 

  • Slamecka NJ (1968) A methodological analysis of shift paradigms in human discrimination learning. Psychol Bull 69(6):423–438

    Article  CAS  PubMed  Google Scholar 

  • Snowden J, Craufurd D, Griffiths H, Thompson J, Neary D (2001) Longitudinal evaluation of cognitive disorder in Huntington’s disease. J Int Neuropsychol Soc 7(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Attention Deficit Hyperactivity Disorders 2(1):1–20. doi:10.1007/s12402-010-0019-x

    Article  PubMed  Google Scholar 

  • Specht K, Lie CH, Shah NJ, Fink GR (2009) Disentangling the prefrontal network for rule selection by means of a non-verbal variant of the Wisconsin Card Sorting Test. Hum Brain Mapp 30(5):1734–1743. doi:10.1002/hbm.20637

    Article  PubMed  Google Scholar 

  • Stachowiak MK, Kucinski A, Curl R, Syposs C, Yang Y, Narla S, Terranova C, Prokop D, Klejbor I, Bencherif M, Birkaya B, Corso T, Parikh A, Tzanakakis ES, Wersinger S, Stachowiak EK (2013) Schizophrenia: a neurodevelopmental disorder—integrative genomic hypothesis and therapeutic implications from a transgenic mouse model. Schizophr Res 143(2–3):367–376. doi:10.1016/j.schres.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  • Starkstein SE, Bolduc PL, Preziosi TJ, Robinson RG (1989) Cognitive impairments in different stages of Parkinson’s disease. J Neuropsychiatry Clin Neurosci 1(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Stuss DT, Levine B, Alexander MP, Hong J, Palumbo C, Hamer L, Murphy KJ, Izukawa D (2000) Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38(4):388–402

    Article  CAS  PubMed  Google Scholar 

  • Sullivan EV, Mathalon DH, Zipursky RB, Kersteen-Tucker Z, Knight RT, Pfefferbaum A (1993) Factors of the Wisconsin Card Sorting Test as measures of frontal-lobe function in schizophrenia and in chronic alcoholism. Psychiatry Res 46(2):175–199

    Article  CAS  PubMed  Google Scholar 

  • Sutherland NS, Mackintosh NJ (1971) Mechanisms of animal discrimination learning. Academic Press, New York

    Google Scholar 

  • Tait DS, Brown VJ (2008) Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats. Behav Brain Res 187(1):100–108

    Article  CAS  PubMed  Google Scholar 

  • Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25(12):3719–3724

    Article  PubMed  Google Scholar 

  • Tait DS, Marston HM, Shahid M, Brown VJ (2009) Asenapine restores cognitive flexibility in rats with medial prefrontal cortex lesions. Psychopharmacology 202(1–3):295–306

    Article  CAS  PubMed  Google Scholar 

  • Tait DS, Chase EA, Brown VJ (2013) Tacrine improves reversal learning in older rats. Neuropharmacology 73C:284–289. doi:10.1016/j.neuropharm.2013.05.036

    Article  CAS  Google Scholar 

  • Tait DS, Chase EA, Brown VJ (2014) Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results. Curr Pharm Des 20(31):5046–5059

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Terada S, Sato S, Honda H, Yoshida H, Kishimoto Y, Kamata G, Oshima E, Ishihara T, Kuroda S (2010) Wisconsin card sorting test and brain perfusion imaging in early dementia. Dement Geriatr Cogn Disord 29(1):21–27. doi:10.1159/000261645

    Article  PubMed  Google Scholar 

  • Terada S, Sato S, Honda H, Kishimoto Y, Takeda N, Oshima E, Yokota O, Uchitomi Y (2011) Perseverative errors on the Wisconsin Card Sorting Test and brain perfusion imaging in mild Alzheimer’s disease. Int Psychogeriatr (IPA) 23(10):1552–1559. doi:10.1017/S1041610211001463

    Article  Google Scholar 

  • Vasic N, Walter H, Hose A, Wolf RC (2008) Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord 109(1–2):107–116. doi:10.1016/j.jad.2007.11.011

    Article  PubMed  Google Scholar 

  • Vigotsky LS, Kasanin JJ (1934) Thought in schizophrenia. Arch Neurol Psychiatry 31(5):1063–1077. doi:10.1001/archneurpsyc.1934.02250050181009

    Article  Google Scholar 

  • Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test—a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75(3):145–157

    Article  CAS  PubMed  Google Scholar 

  • Wallace J, Marston HM, McQuade R, Gartside SE (2014) Evidence that the attentional set shifting test in rats can be applied in repeated testing paradigms. J Psychopharmacol 28(7):691–696. doi:10.1177/0269881114531663

    Article  CAS  PubMed  Google Scholar 

  • Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. doi:10.3389/fgene.2014.00088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weed MR, Bryant R, Perry S (2008) Cognitive development in macaques: attentional set-shifting in juvenile and adult rhesus monkeys. Neuroscience 157(1):22–28. doi:S0306-4522(08)01204-9 [pii] 10.1016/j.neuroscience.2008.08.047

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120(2):272–292

    Article  CAS  PubMed  Google Scholar 

  • Wickens JR, Hyland BI, Tripp G (2011) Animal models to guide clinical drug development in ADHD: lost in translation? Br J Pharmacol 164(4):1107–1128. doi:10.1111/j.1476-5381.2011.01412.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M, Kugel H, Arolt V, Bauer J, Pedersen A (2010) Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci 35(5):321–329. doi:10.1503/jpn.090181

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337. doi:10.1007/s12264-010-0323-7

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453(7197):921–924. doi:10.1038/nature06975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Powell SB, Geyer MA, Jeste DV, Risbrough VB (2010) The mouse attentional-set-shifting task: a method for assaying successful cognitive aging? Cogn Affect Behav Neurosci 10(2):243–251. doi:10/2/243 [pii] 10.3758/CABN.10.2.243

  • Zhuo JM, Prescott SL, Murray ME, Zhang HY, Baxter MG, Nicolle MM (2007) Early discrimination reversal learning impairment and preserved spatial learning in a longitudinal study of Tg2576 APPsw mice. Neurobiol Aging 28(8):1248–1257. doi:10.1016/j.neurobiolaging.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  • Zhuo JM, Prakasam A, Murray ME, Zhang HY, Baxter MG, Sambamurti K, Nicolle MM (2008) An increase in Abeta42 in the prefrontal cortex is associated with a reversal-learning impairment in Alzheimer’s disease model Tg2576 APPsw mice. Curr Alzheimer Res 5(4):385–391

    Article  CAS  PubMed  Google Scholar 

  • Zurkovsky L, Bychkov E, Tsakem EL, Siedlecki C, Blakely RD, Gurevich EV (2013) Cognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in mice. Disease Models Mech 6(1):171–183. doi:10.1242/dmm.010363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Tait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, V.J., Tait, D.S. (2015). Attentional Set-Shifting Across Species. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5002

Download citation

Publish with us

Policies and ethics