Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbruzzese G, Marchese R, Avanzino L, Pelosin E (2015) Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinsonism Relat Disord pii:S1353-8020(15)00380-6

    Google Scholar 

  • Abe Y, Namba H, Zheng Y, Nawa H (2009) In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 161(1):95–110

    CAS  PubMed  Google Scholar 

  • Abel TJ, Dalm BD, Grossbach AJ, Jackson AW, Thomsen T, Greenlee JD (2014) Lateralized effect of pallidal stimulation on self-mutilation in Lesch-Nyhan disease. J Neurosurg Pediatr 14(6):594–597

    PubMed  Google Scholar 

  • Ago M, Ago K, Hara K, Kashimura S, Ogata M (2006) Toxicological and histopathological analysis of a patient who died nine days after a single intravenous dose of methamphetamine: a case report. Leg Med (Tokyo) 8(4):235–239

    CAS  Google Scholar 

  • Allison DJ, Ditor DS (2015) Targeting inflammation to influence mood following spinal cord injury: a randomized clinical trial. J Neuroinflammation 12(1):204

    PubMed  PubMed Central  Google Scholar 

  • Ananth C, Thameem Dheen S, Gopalakrishnakone P, Kaur C (2001) Domoic acid-induced neuronal damage in the rat hippocampus: changes in apoptosis related genes (bcl-2, bax, caspase-3) and microglial response. J Neurosci Res 66(2):177–190

    CAS  PubMed  Google Scholar 

  • Ananth C, Gopalakrishnakone P, Kaur C (2003) Induction of inducible nitric oxide synthase expression in activated microglia following domoic acid (DA)-induced neurotoxicity in the rat hippocampus. Neurosci Lett 338(1):49–52

    CAS  PubMed  Google Scholar 

  • Anastasio NC, Johnson KM (2008) Atypical anti-schizophrenic drugs prevent changes in cortical N-methyl-D-aspartate receptors and behavior following sub-chronic phencyclidine administration in developing rat pups. Pharmacol Biochem Behav 90(4):569–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonini TN, Becker SP, Tamm L, Epstein JN (2015) Hot and cool executive functions in children with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder. J Int Neuropsychol Soc 21(8):584–595

    PubMed  PubMed Central  Google Scholar 

  • Archer T (2011) Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand 123:221–238

    CAS  PubMed  Google Scholar 

  • Archer T (2012) Influence of physical exercise on traumatic brain injury deficits: scaffolding effect. Neurotox Res 21(4):418–434

    PubMed  Google Scholar 

  • Archer T (2014) Health benefits of physical exercise for children and adolescents. J Novel PysioTher 4:203

    Google Scholar 

  • Archer T (2015) Physical exercise as an epigenetic factor determining behavioral outcomes. Clin Exp Psychol 1:1

    Google Scholar 

  • Archer T (2016a) NMDA-R blockers and ADHD modeling, In: Kostrzewa RM, Archer T (eds.) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Archer T (2016b) Noradrenergic-dopaminergic interactions due to DSP4—MPTP neurotoxin treatments: iron connection. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Archer T, Fredriksson A (2006) Influence of noradrenaline denervation on MPTP-induced deficits in mice. J Neural Transm (Vienna) 113(9):1119–1129

    CAS  Google Scholar 

  • Archer T, Fredriksson A (2010) Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res 18(3–4):313–327

    PubMed  Google Scholar 

  • Archer T, Fredriksson A (2012) Delayed exercise-induced functional and neurochemical partial restoration following MPTP. Neurotox Res 21(2):210–221

    PubMed  Google Scholar 

  • Archer T, Fredriksson A (2013) The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 24(3):393–406

    CAS  PubMed  Google Scholar 

  • Archer T, Garcia D (2015) Exercise and dietary restriction for promotion of neurohealth benefits. Health 7:136–152

    CAS  Google Scholar 

  • Archer T, Garcia D (2016) Attention-deficit/hyperactive disorder: focus upon aberrant N-methyl-D-aspartate receptor systems. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Archer T, Kostrzewa RM (2012) Physical exercise alleviates ADHD symptoms: regional deficits and development trajectory. Neurotox Res 21(2):195–209

    PubMed  Google Scholar 

  • Archer T, Kostrzewa RM (2016) Exercise and nutritional benefits in PD: rodent models and clinical settings. In: Kostrzewa RM, Archer T (eds) Neurotoxin Modeling of Brain Disorders-Lifelong Outcomes in Behavioral Teratology. Springer, New York

    Google Scholar 

  • Archer T, Fredriksson A, Johansson B (2011a) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurol Scand 123(2):73–84

    CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A, Schütz E, Kostrzewa RM (2011b) Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 20(1):69–83

    PubMed  Google Scholar 

  • Archer T, Garcia D, Fredriksson A (2014a) Restoration of MPTP-induced deficits by exercise and Milmed(®) co-treatment. PeerJ 2:e531

    PubMed  PubMed Central  Google Scholar 

  • Archer T, Josefsson T, Lindwall M (2014b) Effects of physical exercise on depressive symptoms and biomarkers in depression. CNS Neurol Disord: Drug Targets 13(10):1640–1653

    Google Scholar 

  • Arsenault D, Coulombe K, Zhu A, Gong C, Kil KE, Choi JK, Poutiainen P, Brownell AL (2015) Loss of metabotropic glutamate receptor 5 function on peripheral benzodiazepine receptor in mice prenatally exposed to LPS. PLoS One 10(11):e0142093

    PubMed  PubMed Central  Google Scholar 

  • Ashok A, Rai NK, Tripathi S, Bandyopadhyay S (2015) Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80

    CAS  PubMed  Google Scholar 

  • Babenko O, Kovalchuk I, Metz GA (2015) Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 48:70–91

    PubMed  Google Scholar 

  • Baldi I, Gruber A, Rondeau V, Lebailly P, Brochard P, Fabrigoule C (2011) Neurobehavioral effects of long-term exposure to pesticides: results from the 4-year follow-up of the PHYTONER study. Occup Environ Med 68(2):108–115

    CAS  PubMed  Google Scholar 

  • Banerjee S, Riordan M, Bhat MA (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci 8:58

    PubMed  PubMed Central  Google Scholar 

  • Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261(5):412–417. Review

    CAS  PubMed  Google Scholar 

  • Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW (2015) Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 18(2). pii: pyu010. doi: 10.1093/ijnp/pyu010

    PubMed  PubMed Central  Google Scholar 

  • Barra R, Cruz G, Mayerhofer A, Paredes A, Lara HE (2014) Maternal sympathetic stress impairs follicular development and puberty of the offspring. Reproduction 148(2):137–145

    CAS  PubMed  Google Scholar 

  • Basta-Kaim A, Fijał K, Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Leśkiewicz M, Regulska M, Kubera M, Lasoń W, Wędzony K (2015) Prenatal administration of liposaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience 287:78–92

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends Neurosci 20(11):523–529. Review

    CAS  PubMed  Google Scholar 

  • Berger TW, Kaul S, Stricker EM, Zigmond MJ (1985) Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats. Brain Res 336(2):354–358

    CAS  PubMed  Google Scholar 

  • Berkowitz BA, Spector S, Brossi A, Focella A, Teitel S (1970) Preparation and biological properties of (-) and (+)-6-hydroxydopa. Experientia 26(9):982–983

    CAS  PubMed  Google Scholar 

  • Bernard PB, MacDonald DS, Gill DA, Ryan CL, Tasker RA (2007) Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 17:1121–1133

    CAS  PubMed  Google Scholar 

  • Bezard E, Yue Z, Kirik D, Spillantini MG (2013) Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. 28(1):61–70

    CAS  Google Scholar 

  • Bihaqi SW, Zawia NH (2013) Enhanced taupathy and AD-like pathology in aged primate brains decades after infantile exposure to lead (Pb). Neurotoxicology 39:95–101

    CAS  PubMed  Google Scholar 

  • Bihaqi SW, Bahmani A, Adem A, Zawia NH (2014) Infantile postnatal exposure to lead (Pb) enhances tau expression in the cerebral cortex of aged mice: relevance to AD. Neurotoxicology 44:114–120

    CAS  PubMed  Google Scholar 

  • Birch AM (2014) The contribution of astrocytes to Alzheimer’s disease. Biochem Soc Trans 42(5):1316–1320

    CAS  PubMed  Google Scholar 

  • Bisagno V, Cadet JL (2014) Methamphetamine and MDMA neurotoxicity: biochemical and molecular mechanisms. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer New York, pp 219–236. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_75

    Google Scholar 

  • Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 20(6):788–790

    CAS  PubMed  Google Scholar 

  • Bortel A (2014) Nature of DSP-4 neurotoxicity. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 347–363. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_80

    Google Scholar 

  • Bortel A, Słomian L, Nitka D, Swierszcz M, Jaksz M, Adamus-Sitkiewicz B, Nowak P, Jośko J, Kostrzewa RM, Brus R (2008) Neonatal N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) treatment modifies the vulnerability to phenobarbital- and ethanol-evoked sedative-hypnotic effects in adult rats. Pharmacol Rep 60:331–338

    CAS  PubMed  Google Scholar 

  • Bowyer JF, Frame LT, Clausing P, Nagamoto-Combs K, Osterhout CA, Sterling CR, Tank AW (1998) Long-term effects of amphetamine neurotoxicity on tyrosine hydroxylase mRNA and protein in aged rats. J Pharmacol Exp Ther 286(2):1074–1085

    CAS  PubMed  Google Scholar 

  • Bracci-Laudiero L, De Stefano ME (2016) NGF in early embryogenesis, differentiation and pathology in the nervous and immune systems. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Mueller RA (1984a) Neonatal-6-hydroxydopamine treatment: model of susceptibility for self-mutilation in the Lesch-Nyhan syndrome. Pharmacol Biochem Behav 21(3):459–461

    CAS  PubMed  Google Scholar 

  • Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Crotty K, Mueller RA (1984b) Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J Pharmacol Exp Ther 231(2):343–354

    CAS  PubMed  Google Scholar 

  • Breese GR, Baumeister A, Napier TC, Frye GD, Mueller RA (1985a) Evidence that D-1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine. J Pharmacol Exp Ther 235(2):287–295

    CAS  PubMed  Google Scholar 

  • Breese GR, Napier TC, Mueller RA (1985b) Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: functional supersensitivity of D-1 dopamine receptors in neonatally lesioned rats. J Pharmacol Exp Ther 234(2):447–455

    CAS  PubMed  Google Scholar 

  • Breese GR, Mueller RA, Napier TC, Duncan GE (1986) Neurobiology of D1 dopamine receptors after neonatal-6-OHDA treatment: relevance to Lesch-Nyhan disease. Adv Exp Med Biol 204:197–215

    CAS  PubMed  Google Scholar 

  • Breese GR, Duncan GE, Napier TC, Bondy SC, Iorio LC, Mueller RA (1987) 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. J Pharmacol Exp Ther 240(1):167–176

    CAS  PubMed  Google Scholar 

  • Breese GR, Criswell HE, Duncan GE, Mueller RA (1989) Dopamine deficiency in self-injurious behavior. Psychopharmacol Bull 25(3):353–357. Review. Erratum in: Psychopharmacol Bull 1990; 26(3):296

    Google Scholar 

  • Breese GR, Criswell HE, Duncan GE, Mueller RA (1990a) A dopamine deficiency model of Lesch-Nyhan disease—the neonatal-6-OHDA-lesioned rat. Brain Res Bull 25(3):477–484. Review

    CAS  PubMed  Google Scholar 

  • Breese GR, Criswell HE, Mueller RA (1990b) Evidence that lack of brain dopamine during development can increase the susceptibility for aggression and self-injurious behavior by influencing D1-dopamine receptor function. Prog Neuropsychopharmacol Biol Psychiatry 14(Suppl):S65–S80

    CAS  PubMed  Google Scholar 

  • Breese GR, Criswell HE, Johnson KB, O’Callaghan JP, Duncan GE, Jensen KF, Simson PE, Mueller RA (1994) Neonatal destruction of dopaminergic neurons. Neurotoxicology 15(1):149–159

    CAS  PubMed  Google Scholar 

  • Breese GR, Knapp DJ, Criswell HE, Moy SS, Papadeas ST, Blake BL (2005) The neonate-6-hydroxydopamine-lesioned rat: a model for clinical neuroscience and neurobiological principles. Brain Res Brain Res Rev 48(1):57–73

    CAS  PubMed  Google Scholar 

  • Broberg BV, Dias R, Glenthøj BY, Olsen CK (2008) Evaluation of a neurodevelopmental model of schizophrenia—early postnatal PCP treatment in attentional set-shifting. Behav Brain Res 190(1):160–163

    CAS  PubMed  Google Scholar 

  • Broberg BV, Oranje B, Glenthøj BY, Fejgin K, Plath N, Bastlund JF (2010) Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia—gating of auditory-evoked potentials and prepulse inhibition. Behav Brain Res 213(2):142–147

    PubMed  Google Scholar 

  • Broberg BV, Madsen KH, Plath N, Olsen CK, Glenthøj BY, Paulson OB, Bjelke B, Søgaard LV (2013) A schizophrenia rat model induced by early postnatal phencyclidine treatment and characterized by magnetic resonance imaging. Behav Brain Res 250:1–8

    CAS  PubMed  Google Scholar 

  • Brown RW, Peterson DJ (2016) Applications of the neonatal quinpirole model to psychosis and convergence upon the dopamine D2 receptor. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Brown GC, Vilalta A (2015) How microglia kill neurons. Brain Res 1628(Pt B):288–297

    CAS  PubMed  Google Scholar 

  • Brown RW, Gass JT, Kostrzewa RM (2002) Ontogenetic quinpirole treatments produce spatial memory deficits and enhance skilled reaching in adult rats. Pharmacol Biochem Behav 72(3):591–600

    CAS  PubMed  Google Scholar 

  • Brown RW, Flanigan TJ, Thompson KN, Thacker SK, Schaefer TL, Williams MT (2004a) Neonatal quinpirole treatment impairs Morris water task performance in early postweanling rats: relationship to increases in corticosterone and decreases in neurotrophic factors. Biol Psychiatry 56(3):161–168

    CAS  PubMed  Google Scholar 

  • Brown RW, Thompson KD, Thompson KN, Ward JJ, Thacker SK, Williams MT, Kostrzewa RM (2004b) Adulthood nicotine treatment alleviates behavioural impairments in rats neonatally treated with quinpirole: possible roles of acetylcholine function and neurotrophic factor expression. Eur J Neurosci 19(6):1634–1642

    PubMed  Google Scholar 

  • Brown RW, Thompson KN, Click IA, Best RA, Thacker SK, Perna MK (2005) The effects of eticlopride on Morris water task performance in male and female rats neonatally treated with quinpirole. Psychopharmacology 180(2):234–240

    CAS  PubMed  Google Scholar 

  • Brown RW, Perna MK, Schaefer TL, Williams MT (2006) The effects of adulthood nicotine treatment on D2-mediated behavior and neurotrophins of rats neonatally treated with quinpirole. Synapse 59(5):253–259

    CAS  PubMed  Google Scholar 

  • Brown RW, Perna MK, Maple AM, Wilson TD, Miller BE (2008) Adulthood olanzapine treatment fails to alleviate decreases of ChAT and BDNF RNA expression in rats quinpirole-primed as neonates. Brain Res 1200:66–77

    CAS  PubMed  Google Scholar 

  • Brown RW, Maple AM, Perna MK, Sheppard AB, Cope ZA, Kostrzewa RM (2012) Schizophrenia and substance abuse comorbidity: nicotine addiction and theneonatal quinpirole model. Dev Neurosci 34(2–3):140–151

    CAS  PubMed  Google Scholar 

  • Brundin L, Erhardt S, Bryleva EY, Achtyes ED, Postolache TT (2015) The role of inflammation in suicidal behaviour. Acta Psychiatr Scand 132(3):192–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brus R, Szkilnik R, Nowak P, Kasperska A, Oświęcimska J, Kostrzewa RM, Shani J (1998a) Locomotor sensitization of dopamine receptors by their agonists quinpirole and SKF-38393, during maturation and aging in rats. Pharmacol Rev Commun 10:25–30

    CAS  Google Scholar 

  • Brus R, Szkilnik R, Nowak P, Kostrzewa RM, Shani J (1998b) Sensitivity of central dopamine receptors in rats to quinpirole and SKF-38393, administered at their early stages of ontogenicity, evaluated by learning and memorizing a conditioned avoidance reflex. Pharmacol Rev Commun 10:31–36

    CAS  Google Scholar 

  • Brus R, Nowak P, Szkilnik R, Mikolajun U, Kostrzewa RM (2004) Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotox Res 6(4):317–325

    PubMed  Google Scholar 

  • Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6(5):331–341

    PubMed  PubMed Central  Google Scholar 

  • Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden A (2009) Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57(5):550–560

    PubMed  PubMed Central  Google Scholar 

  • Cadet JL (2014) Epigenetics of stress, addiction, and resilience: Therapeutic implications. Mol Neurobiol. 53(1):545–560

    PubMed  PubMed Central  Google Scholar 

  • Cadet JL, Jayanthi S (2013) Epigenetics of methamphetamine-induced changes in glutamate function. Neuropsychopharmacology 38(1):248–249

    PubMed  Google Scholar 

  • Casey DE (1987) Tardive dyskinesia. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 1411–1419

    Google Scholar 

  • Castañé A, Santana N, Artigas F (2015) PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology 232(21–22):4085–4097

    PubMed  Google Scholar 

  • Chen J, Wang Z, Li M (2011) Multiple ‘hits’ during postnatal and early adulthood periods disrupt the normal development of sensorimotor gating ability in rats. J Psychopharmacol 25(3):379–392

    CAS  PubMed  Google Scholar 

  • Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309(16):1696–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson AL, Chester N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol 36:361–369

    CAS  PubMed  Google Scholar 

  • Chung WS, Welsh CA, Barres BA, Stevens B (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18(11):1539–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MB, King JC, Kostrzewa RM (1979) Loss of nerve cell bodies in caudal locus coeruleus following treatment of neonates with 6-hydroxydopa. Neurosci Lett 13(3):331–336

    CAS  PubMed  Google Scholar 

  • Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249(8):2447–2452

    CAS  PubMed  Google Scholar 

  • Cooper JD, Lindholm D, Sofroniew MV (1994) Reduced transport of 125I-NGF by cholinergic neurons and downregulated TrkA expression in the medial septum of aged rats. Neuroscience 62:625–629

    CAS  PubMed  Google Scholar 

  • Cope ZA, Huggins KN, Sheppard AB, Noel DM, Roane DS, Brown RW (2010) Neonatal quinpirole treatment enhances locomotor activation and dopamine release in the nucleus accumbens core in response to amphetamine treatment in adulthood. Synapse 64(4):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordova FM, Aguiar AS Jr, Peres TV, Lopes MW, Gonçalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RD, Erikson KM, Aschner M (2012) Leal RB (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7(3):e33057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criswell H, Mueller RA, Breese GR (1989) Priming of D1-dopamine receptor responses: long-lasting behavioral supersensitivity to a D1-dopamine agonist following repeated administration to neonatal 6-OHDA-lesioned rats. J Neurosci 9(1):125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska J, Nowak P, Brus R (2007) Desensitization of 5-HT(1A) autoreceptors induced by neonatal DSP-4 treatment. Eur Neuropsychopharmacol 17:129–137

    CAS  PubMed  Google Scholar 

  • Dal-Pizzol F, Klamt F, Frota ML Jr, Andrades ME, Caregnato FF, Vianna MM, Schröder N, Quevedo J, Izquierdo I, Archer T, Moreira JC (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130(1):109–114

    CAS  PubMed  Google Scholar 

  • De Bartolo P, Gelfo F, Mandolesi L, Foti F, Cutuli D, Petrosini L (2009) Effects of chronic donepezil treatment and cholinergic deafferentation on parietal pyramidal neuron morphology. J Alzheimers Dis 17(1):177–191

    PubMed  Google Scholar 

  • De Bartolo P, Cutuli D, Ricceri L, Gelfo F, Foti F, Laricchiuta D, Scattoni ML, Calamandrei G, Petrosini L (2010) Does age matter? Behavioral and neuro-anatomical effects of neonatal and adult basal forebrain cholinergic lesions. J Alzheimers Dis 20(1):207–227

    PubMed  Google Scholar 

  • de la Torre R, Farré M, Ortuño J, Mas M, Brenneisen R, Roset PN, Segura J, Camí J (2000) Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 49(2):104–109

    PubMed  PubMed Central  Google Scholar 

  • De-Carolis C, Boyd GA, Mancinelli L, Pagano S, Eramo S (2015) Methamphetamine abuse and “meth mouth” in Europe. Med Oral Patol Oral Cir Bucal 20(2):e205–e210

    PubMed  PubMed Central  Google Scholar 

  • Delany FM, Byrne ML, Whittle S, Simmons JG, Olsson C, Mundy LK, Patton GC, Allen NB (2015) Depression, immune function, and early adrenarche in children. Psychoneuroendocrinology 63:228–234

    PubMed  Google Scholar 

  • Desplats P, Dumaop W, Cronin P, Gianella S, Woods S, Letendre S, Smith D, Masliah E, Grant I (2014) Epigenetic alterations in the brain associated with HIV-1 infection andmethamphetamine dependence. PLoS One 9(7):e102555

    PubMed  PubMed Central  Google Scholar 

  • Do HT, Bruelle C, Pham DD, Jauhiainen M, Eriksson O, Korhonen LT, Lindholm D (2015) Nerve growth factor (NGF) and pro-NGF increase low-density lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms: role of LDL in neurite outgrowth. J Neurochem 2015 Oct 20. doi:10.1111/jnc.13397. [Epub ahead of print]

    PubMed  Google Scholar 

  • Doebel S, Zelazo PD (2013) Bottom-up and top-down dynamics in young children’s executive function: Labels aid 3-year-olds’ performance on the Dimensional Change Card Sort. Cogn Dev 28(3):222–232

    PubMed  PubMed Central  Google Scholar 

  • Doucette TA, Tasker RA (2016) Perinatal domoic acid as a neuroteratogen. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Doucette TA, Strain SM, Allen GV, Ryan CL, Tasker RAR (2000) Comparative behavioural toxicity of domoic acid and kainic acid in neonatal rats. Neurotoxicol Teratol 22:863–869

    CAS  PubMed  Google Scholar 

  • Doucette TA, Bernard PB, Husum H, Perry MA, Ryan CL, Tasker RA (2004) Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotox Res 6(7,8):555–563

    CAS  PubMed  Google Scholar 

  • Fialová M, Šírová J, Bubeníková-Valešová V, Šlamberová R (2015) The effect of prenatal methamphetamine exposure on recognition memory in adult rats. Prague Med Rep 116(1):31–39

    PubMed  Google Scholar 

  • Fornai F, Bassi L, Bonaccorsi I, Giorgi F, Corsini GU (1997) Noradrenaline loss selectivity exacerbates nigrostriatal toxicity in different species of rodents. Funct Neurol 12(3–4):193–198

    CAS  PubMed  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159(1):25–30

    CAS  PubMed  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2000) Maze learning and motor activity deficits in adult mice induced by iron exposure during a critical postnatal period. Brain Res Dev Brain Res 119(1):65–74

    CAS  PubMed  Google Scholar 

  • Fredriksson A, Stigsdotter IM, Hurtig A, Ewalds-Kvist B, Archer T (2011) Running wheel activity restores MPTP-induced functional deficits. J Neural Transm 118(3):407–420

    CAS  PubMed  Google Scholar 

  • Fu R, Sutcliffe D, Zhao H, Huang X, Schretlen DJ, Benkovic S, Jinnah HA (2015) Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways. Mol Genet Metab 114(1):55–61

    CAS  PubMed  Google Scholar 

  • Fukushima S, Furube E, Itoh M, Nakashima T, Miyata S (2015) Robust increase in microglia proliferation in the fornix of hippocampal axonal pathway after single LPS stimulation. J Neuroimmunol 285:31–40

    CAS  PubMed  Google Scholar 

  • Furukawa S (2015) Basic research on neurotrophic factors and its application to medical uses. Yakugaku Zasshi 135(11):1213–1226

    CAS  PubMed  Google Scholar 

  • Futamura T, Kakita A, Tohmi M, Sotoyama H, Takahashi H, Nawa H (2003) Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: implication for epidermal growth factor in cognitive development. Mol Psychiatry 8(1):19–29

    CAS  PubMed  Google Scholar 

  • Galbally M, Roberts M, Buist A; Perinatal Psychotropic Review Group (2010) Mood stabilizers in pregnancy: a systematic review. Aust NZJ Psychiatry 44(11):967–977

    Google Scholar 

  • Gao Y, Liu L, Li Q, Wang Y (2015) Differential alterations in the morphology and electrophysiology of layer II pyramidal cells in the primary visual cortex of a mouse model prenatally exposed to LPS. Neurosci Lett 591:138–143

    CAS  PubMed  Google Scholar 

  • Gill DA, Ramsay R, Tasker RA (2010) Selective reductions in subpopulations of GABAergic neurons in a developmental rat model of epilepsy. Brain Res 1331:114–123

    CAS  PubMed  Google Scholar 

  • Godino A, Jayanthi S, Cadet JL (2015) Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 10(7):574–580

    PubMed  PubMed Central  Google Scholar 

  • Gong L, Kostrzewa RM, Fuller RW, Perry KW (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system. J Pharmacol Exp Ther 261:1000–1007

    CAS  PubMed  Google Scholar 

  • Gong L, Kostrzewa RM, Brus R, Fuller RW, Perry KW (1993a) Ontogenetic SKF 38393 treatments sensitize dopamine D1 receptors in neonatal 6-OHDA-lesioned rats. Brain Res Dev Brain Res 76(1):59–65

    CAS  PubMed  Google Scholar 

  • Gong L, Kostrzewa RM, Perry KW, Fuller RW (1993b) Dose-related effects of a neonatal 6-OHDA lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. Brain Res Dev Brain Res 76(2):233–238

    CAS  PubMed  Google Scholar 

  • Gong L, Kostrzewa RM, Li C (1994) Neonatal 6-OHDA and adult SKF 38393 treatments alter dopamine D1 receptor mRNA levels: absence of other neurochemical associations with the enhanced behavioral responses of lesioned rats. J Neurochem 63:1282–1290

    CAS  PubMed  Google Scholar 

  • Göttle M, Prudente CN, Fu R, Sutcliffe D, Pang H, Cooper D, Veledar E, Glass JD (2014) Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease. Ann Neurol 76(1):95–107

    PubMed  PubMed Central  Google Scholar 

  • Grados M, Sung HM, Kim S, Srivastava S (2014) Genetic findings in obsessive-compulsive disorder connect to brain-derived neutrophic factor and mammalian target of rapamycin pathways: implications for drug development. Drug Dev Res 75(6):372–383

    CAS  PubMed  Google Scholar 

  • Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Williams MT, Vorhees CV (2013) Neonatal +-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists. Int J Neuropsychopharmacol 16(2):377–391

    CAS  PubMed  Google Scholar 

  • Grayson DR, Guidotti A (2015) Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics. 2015 Nov 9. [Epub ahead of print] PMID: 26551091

    Google Scholar 

  • Grayson B, Barnes SA, Markou A, Piercy C, Podda G, Neill JC (2016) Postnatal phencyclidine (PCP) as a neurodevelopmental model of schizophrenia pathophysiology and symptpmatology: a review. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Groves NJ, McGrath JJ, Burne TH (2014) Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr 34:117–141

    CAS  PubMed  Google Scholar 

  • Hamdi A, Kostrzewa RM (1991) Ontogenic homologous supersensitization of dopamine D1 receptors. Eur J Pharmacol 203:115–120

    CAS  PubMed  Google Scholar 

  • Harro J (2015) Neuropsychiatric adverse effects of amphetamine and methamphetamine. Int Rev Neurobiol 120:179–204

    PubMed  Google Scholar 

  • Hasan W, Smith PG (2014) Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons. Auton Neurosci 181:13–20

    CAS  PubMed  Google Scholar 

  • He N, Li F, Li Y, Guo L, Chen L, Huang X, Lui S, Gong Q (2015) Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder. Neurosci Lett 600:45–49

    CAS  PubMed  Google Scholar 

  • Hertz L, Chen Y, Waagepetersen HS (2015) Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity and astrocyte function. J Neurochem 134(1):7–20

    CAS  PubMed  Google Scholar 

  • Hirsch MA, Iyer SS, Sanjak M (2015) Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat Disord 22(Suppl 1):S78–S81

    PubMed  Google Scholar 

  • Hoftman GD, Lewis DA (2011) Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 37(3):493–503

    PubMed  PubMed Central  Google Scholar 

  • Hohsfield LA, Ehrlich D, Humpel C (2014) Intravenous infusion of nerve growth factor-secreting monocytes supports the survival of cholinergic neurons in the nucleus basalis of Meynert in hypercholesterolemia Brown-Norway rats. J Neurosci Res 92(3):298–306

    CAS  PubMed  Google Scholar 

  • Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N (1999) Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 22:537–553

    Google Scholar 

  • Hongwanishkul D, Happaney KR, Lee WS, Zelazo PD (2006) Assessment of hot and cool executive function in young children: age-related changes and individual differences. Dev Neuropsychol 28(2):617–644

    Google Scholar 

  • Hrebíčková I, Malinová-Ševčíková M, Macúchová E, Nohejlová K, Šlamberová R (2014) Exposure to methamphetamine during first and second half of prenatal period and its consequences on cognition after long-term application in adulthood. Physiol Res 63(Suppl 4):S535–S545

    PubMed  Google Scholar 

  • Huang N-Y, Kostrzewa RM, Li C, Perry KW, Fuller RW (1997) Increased spontaneous oral dyskinesias persist in haloperidol-withdrawn rats neonatally lesioned with 6-hydroxydopamine: absence of an association with the Bmax for [3H]raclopride binding to neostriatal homogenates. J Pharmacol Exp Ther 280:268–276

    CAS  PubMed  Google Scholar 

  • Ibi D, González-Maeso J (2015) Epigenetic signaling in schizophrenia. Cell Signal 27(10):2131–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 35(7):338–348

    CAS  PubMed  Google Scholar 

  • Iwakura Y, Zheng Y, Sibilia M, Abe Y, Piao YS, Yokomaku D, Wang R, Ishizuka Y, Takei N, Nawa H (2011a) Qualitative and quantitative re-evaluation of epidermal growth factor-ErbB1 action on developing midbrain dopaminergic neurons in vivo and in vitro: target-derived neurotrophic signaling (Part 1). J Neurochem 118(1):45–56

    CAS  PubMed  Google Scholar 

  • Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa H (2011b) Dopamine-dependent ectodomain shedding and release of epidermal growth factor in developing striatum: target-derived neurotrophic signaling (Part 2). J Neurochem 118(1):57–68

    CAS  PubMed  Google Scholar 

  • Jablonski SA, Williams MT, Vorhees CV (2016) Neurobehavioral effects from developmental methamphetamine exposure. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Jacobowitz D, Kostrzewa R (1971) Selective action of 6-hydroxydopa on noradrenergic terminals: mapping of preterminal axons of the brain. Life Sci I 10(23):1329–1342

    CAS  PubMed  Google Scholar 

  • Jacobsen PE, Henriksen TB, Haubek D, Østergaard JR (2014) Prenatal exposure to antiepileptic drugs and dental agenesis. PLoS One 9(1):e84420

    PubMed  PubMed Central  Google Scholar 

  • Jain P, Wadhwa PK, Jadhav HR (2015) Reactive astrogliosis: role in Alzheimer’s disease. CNS Neurol Disord Drug Targets 14(7):872–879

    CAS  PubMed  Google Scholar 

  • Jeste DV, Caligiuri MP (1993) Tardive dyskinesia. Schizophr Bull 19:303–315

    CAS  PubMed  Google Scholar 

  • Jinnah HA, Jones MD, Wojcik BE, Rothstein JD, Hess EJ, Friedmann T, Breese GR (1999) Influence of age and strain on striatal dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J Neurochem 72(1):225–229

    CAS  PubMed  Google Scholar 

  • Jo WK, Zhang Y, Emrich HM, Dietrich DE (2015) Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 9:268

    PubMed  PubMed Central  Google Scholar 

  • Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)—a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188

    CAS  PubMed  Google Scholar 

  • Jonsson G, Hallman H, Sundström E (1982) Effects of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenaline neurons in the rat. Neuroscience 7(11):2895–2907

    CAS  PubMed  Google Scholar 

  • Kaalund SS, Riise J, Broberg BV, Fabricius K, Karlsen AS, Secher T, Plath N, Pakkenberg B (2013) Differential expression of parvalbumin in neonatal phencyclidine-treated rats and socially isolated rats. J Neurochem 124(4):548–557

    CAS  PubMed  Google Scholar 

  • Kato T, Abe Y, Sotoyama H, Kakita A, Kominami R, Hirokawa S, Ozaki M, Takahashi H, Nawa H (2011) Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: implication in neurodevelopmental hypothesis for schizophrenia. Mol Psychiatry 16(3):307–320

    CAS  PubMed  Google Scholar 

  • Kehoe P, Callahan M, Daigle A, Mallinson K, Brudzynski S (2001) The effect of cholinergic stimulation on rat pup ultrasonic vocalizations. Dev Psychobiol 38(2):92–100

    CAS  PubMed  Google Scholar 

  • Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392

    PubMed  PubMed Central  Google Scholar 

  • Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, Shin CY, Ko KH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201(2):137–142

    CAS  PubMed  Google Scholar 

  • Kim JW, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, Choi CS, Kim KC, Gonzales EL, You JS, Choi DH, Lee J, Han SH, Yang SM, Cheong JH, Shin CY, Bahn GH (2014) Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behaviour in valproic acid-induced animal model of autism. PLoS One 9(8):e104927

    PubMed  PubMed Central  Google Scholar 

  • Kirsten TB, Lippi LL, Bevilacqua E, Bernardi MM (2013) LPS exposure increases maternal corticosterone levels, causes placental injury and increases Il-1B levels in adult rat offspring: relevance to autism. PLoS One 8(12):e82244

    PubMed  PubMed Central  Google Scholar 

  • Kjaerby C, Bundgaard C, Fejgin K, Kristiansen U, Dalby NO (2013) Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment. Neuropharmacology 72:157–168

    CAS  PubMed  Google Scholar 

  • Kjaerby C, Broberg BV, Kristiansen U, Dalby NO (2014) Impaired GABAergic inhibition in the prefrontal cortex of early postnatalphencyclidine (PCP)-treated rats. Cereb Cortex 24(9):2522–2532

    PubMed  Google Scholar 

  • Knapp DJ, Breese GR (2016) Perinatal 6-hydroxydopamine to produce a rodent model of Lesch-Nyhan disease. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Kokoshka JM, Metzger RR, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE (1998) Methamphetamine treatment rapidly inhibits serotonin, but not glutamate, transporters in rat brain. Brain Res 799(1):78–83

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM (1988) Reorganization of noradrenergic neuronal systems following neonatal chemical and surgical injury. Prog Brain Res 73:405–423. Review

    Google Scholar 

  • Kostrzewa RM (1995) Dopamine receptor supersensitivity. Neurosci Biobehav Rev 19:1–17

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM (2016) Perinatal effects of 6-hydroxydopa, a noradrenergic neurotoxin and AMPA receptor excitotoxin. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Kostrzewa RM, Brus R (1991) Ontogenic homologous supersensitization of quinpirole-induced yawning in rats. Pharmacol Biochem Behav 39:517–519

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Brus R (2016) Lifelong rodent model of tardive dyskinesia-persistence after antipsychotic drug withdrawal. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Kostrzewa RM, Garey RE (1976) Effects of 6-hydroxydopa on noradrenergic neurons in developing rat brain. J Pharmacol Exp Ther 197:105–118

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Garey RE (1977) Sprouting of noradrenergic terminals in rat cerebellum following neonatal treatment with 6-hydroxydopa. Brain Res 124:385–391

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Gong L (1991) Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA. Pharmacol Biochem Behav 39(3):677–682

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Harper JW (1974) Effect of 6-hydroxydopa on catecholamine-containing neurons in brains of newborn rats. Brain Res 69(1):174–181

    CAS  PubMed  Google Scholar 

  • Kostrzewa R, Jacobowitz D (1972) The effect of 6-hydroxydopa on peripheral adrenergic neurons. J Pharmacol Exp Ther 183(2):284–297

    CAS  PubMed  Google Scholar 

  • Kostrzewa R, Jacobwitz D (1973) Acute effects of 6-hydroxydopa on central monoaminergic neurons. Eur J Pharmacol 21(1):70–80

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa FP (2012) Neonatal 6-hydroxydopamine lesioning enhances quinpirole-induced vertical jumping in rats that were quinpirole primed during postnatal ontogeny. Neurotox Res 21(2):231–235

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Brus R, Kalbfleisch J (1991) Ontogenetic homologous sensitization to the antinociceptive action of quinpirole in rats. Eur J Pharmacol 209:157–161

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Gong L, Brus R (1992) Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol Exp 53:31–41

    Google Scholar 

  • Kostrzewa RM, Brus R, Rykaczewska M, Plech A (1993a) Low dose quinpirole ontogenically sensitizes to quinpirole-induced yawning in rats. Pharmacol Biochem Behav 44:487–489

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Guo J, Kostrzewa FP (1993b) Ontogenetic quinpirole treatments induce vertical jumping activity in rats. Eur J Pharmacol 239:183–187

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Brus R, Kalbflesich JH, Perry KW, Fuller RW (1994) Proposed animal model of attention deficit hyperactivity disorder. Brain Res Bull 34:161–167

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Reader TA, Descarries L (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J Neurochem 70:889–898

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Brus R (2000) Dopaminergic denervation enhances susceptibility to hydroxyl radicals in rat neostriatum. Amino Acids 19:183–199

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Brus R (2002) Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson’s disease. Amino Acids 23:57–63

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Brus R (2003) Dopamine receptor supersensitivity: an outcome and index of neurotoxicity. Neurotox Res 5:111–118

    PubMed  Google Scholar 

  • Kostrzewa RM, Nowak P, Kostrzewa JP, Kostrzewa RA, Brus R (2004) Dopamine D2 agonist priming in intact and dopamine-lesioned rats. Neurotox Res 6:457–462

    PubMed  Google Scholar 

  • Kostrzewa RM, Nowak P, Kostrzewa JP, Kostrzewa RA, Brus R (2005) Peculiarities of L-DOPA treatment of Parkinson’s disease. Amino Acids 28:157–164

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Brus R, Kostrzewa RA, Nowak P (2006) Proposed animal model of severe Parkinson’s disease: neonatal 6-hydroxydopamine lesion of dopaminergic innervation of striatum. J Neural Transm Suppl 70:277–279

    CAS  Google Scholar 

  • Kostrzewa RM, Huang N-Y, Kostrzewa JP, Nowak P, Brus R (2007) Modeling tardive dyskinesia: predictive 5-HT2C receptor antagonist treatment. Neurotox Res 11(1):41–50

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R (2008) Pharmacological models of ADHD. J Neural Transm 115(2):287–298

    CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Kostrzewa FP, Brus R, Nowak P (2011) Stereotypic progressions in psychotic behavior. Neurotox Res 19:243–252

    PubMed  Google Scholar 

  • Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P (2016a) Perinatal 6-hydroxydopamine modeling of ADHD. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P (2016b) Perinatal 6-hydroxydopamine to produce a lifelong model of severe Parkinson’s disease. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Kostrzewa RM, Nowak P, Brus R, Brown RW (2016c) Perinatal treatments with the dopamine D2-receptor agonist quinpirole produces permanent D2-receptor supersensitization: a model of schizophrenia. Neurochem Res 2015 Nov 7. [Epub ahead of print] PMID: 26547196 In press

    Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulaga S, Sheehy O, Zargarzadeh AH, Moussally K, Bérard A (2011) Antiepileptic drug use during pregnancy: perinatal outcomes. Seizure 20(9):667–672

    PubMed  Google Scholar 

  • Lahiri DK, Maloney B, Zawia NH (2009) The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 14(11):992–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laviola G, Adriani W, Rea M, Aloe L, Alleva E (2004) Social withdrawal, neophobia, and stereotyped behavior in developing rats exposed to neonatal asphyxia. Psychopharmacology 175:196–205

    CAS  PubMed  Google Scholar 

  • Le Magueresse C, Monyer H (2013) GABAergic interneurons shape the functional maturation of the cortex. Neuron 77(3):388–405

    PubMed  Google Scholar 

  • Leanza G, Nilsson OG, Wiley RG, Björklund A (1995) Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur J Neurosci 7(2):329–343

    CAS  PubMed  Google Scholar 

  • Leanza G, Nilsson OG, Nikkhah G, Wiley RG, Björklund A (1996) Effects of neonatal lesions of the basal forebrain cholinergic system by 192 immunoglobulin G-saporin: biochemical, behavioural and morphological characterization. Neuroscience 74(1):119–141

    CAS  PubMed  Google Scholar 

  • Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97(20):11032–11037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374(9701):1627–1638

    PubMed  PubMed Central  Google Scholar 

  • Lian H, Zheng H (2015) Signaling pathways regulating neuron glia interaction and their implications in Alzheimer’s disease. J Neurochem. 6 Nov 2015. doi:10.1111/jnc.13424. [Epub ahead of print] Review

    PubMed  PubMed Central  Google Scholar 

  • Lloyd KA (2013) A scientific review: mechanisms of valproate-mediated teratogenesis. Bioscience Horizons 6:hzt003

    CAS  Google Scholar 

  • Lyons WE, Fritschy JM, Grzanna R (1989) The noradrenergic neurotoxin DSP-4 eliminates the coeruleospinal projection but spares projections of the A5 and A7 groups to the ventral horn of the rat spinal cord. J Neurosci 9:1481–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27:119–127

    CAS  PubMed  Google Scholar 

  • Malinová-Ševčíková M, Hrebíčková I, Macúchová E, Nová E, Pometlová M, Šlamberová R (2014) Differences in maternal behavior and development of their pups depend on the time of methamphetamine exposure during gestation period. Physiol Res 63(Suppl 4):S559–S572

    PubMed  Google Scholar 

  • Maple AM, Perna MK, Parlaman JP, Stanwood GD, Brown RW (2007) Ontogenetic quinpirole treatment produces long-lasting decreases in the expression of Rgs9, but increases Rgs17 in the striatum, nucleus accumbens and frontal cortex. Eur J Neurosci 26(9):2532–2538

    PubMed  Google Scholar 

  • Maple AM, Smith KJ, Perna MK, Brown RW (2015) Neonatal quinpirole treatment produces prepulse inhibition deficits in adult male and female rats. Pharmacol Biochem Behav 137:93–100

    CAS  PubMed  Google Scholar 

  • Marco EM, Velarde E, Llorente R, Laviola G (2016) Disrupted circadian rhythm as a common player in developmental models of neuropsychiatric disorders. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • McDonnell-Dowling K, Kelly JP (2015) The consequences of prenatal and/or postnatal methamphetamine exposure on neonatal development and behaviour in rat offspring. Int J Dev Neurosci 47(Pt B):147–156

    CAS  PubMed  Google Scholar 

  • Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Bodurka J, Kent Teague T, Dantzer R, Savitz J (2015) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun pii: S0889-1591(15) 30048-30049

    Google Scholar 

  • Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053

    CAS  PubMed  Google Scholar 

  • Mizuno M, Kawamura H, Takei N, Nawa H (2008) The anthraquinone derivative emodin ameliorates neurobehavioral deficits of a rodent model for schizophrenia. J Neural Transm 115(3):521–530

    CAS  PubMed  Google Scholar 

  • Mizuno M, Kawamura H, Ishizuka Y, Sotoyama H, Nawa H (2010) The anthraquinone derivative emodin attenuates methamphetamine-induced hyperlocomotion and startle response in rats. Pharmacol Biochem Behav 97(2):392–398

    CAS  PubMed  Google Scholar 

  • Mohl B, Ofen N, Jones LL, Robin AL, Rosenberg DR, Diwadkar VA, Casey JE, Stanley JA (2015) Neural dysfunction in ADHD with reading disability during a word rhyming continuous performance task. Brain Cogn 99:1–7

    CAS  PubMed  Google Scholar 

  • Monden Y, Dan I, Nagashima M, Dan H, Uga M, Ikeda T, Tsuzuki D, Kyutoku Y, Gunji Y, Hirano D, Taniguchi T, Shimoizumi H, Watanabe E, Yamagata T (2015) Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. Neuroimage Clin 9:1–12

    PubMed  PubMed Central  Google Scholar 

  • Mossakowski AA, Pohlan J, Bremer D, Lindquist R, Millward JM, Bock M, Pollok K, Mothes R, Viohl L, Radbruch M, Gerhard J, Bellmann-Strobl J, Behrens J, Infante-Duarte C, Mähler A, Boschmann M, Rinnenthal JL, Füchtemeier M, Herz J, Pache FC, Bardua M, Priller J, Hauser AE, Paul F, Niesner R, Radbruch H (2015) Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol 130(6):799–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouton M, Harvey BH, Cockeran M, Brink CB (2015) The long-term effects of methamphetamine exposure during pre-adolescence on depressive-like behaviour in a genetic animal model of depression. Metab Brain Dis 18 Nov 2015 [Epub ahead of print]

    Google Scholar 

  • Müller N, Weidinger E, Leitner B, Schwarz MJ (2015) The role of inflammation in schizophrenia. Front Neurosci 9:372

    PubMed  PubMed Central  Google Scholar 

  • Myint AM (2013) Inflammation, neurotoxins and psychiatric disorders. Mod Trends Pharmacopsychiatri 28:61–74

    CAS  Google Scholar 

  • Nagano T, Mizuno M, Morita K, Nawa H (2016) Pathological implications of oxidative stress in patients and animal models with schizophrenia: the role of epidermal growth factor receptor signaling. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Nakatani-Pawlak A, Yamaguchi K, Tatsumi Y, Mizoguchi H, Yoneda Y (2009) Neonatal phencyclidine treatment in mice induces behavioral, histological and neurochemical abnormalities in adulthood. Biol Pharm Bull 32(9):1576–1583

    CAS  PubMed  Google Scholar 

  • Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52(4):576–579

    CAS  PubMed  Google Scholar 

  • Neill JC, Harte MK, Haddad PM, Lydall ES, Dwyer DM (2014) Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: a translational link to humans. Eur Neuropsychopharmacol 24(5):822–835

    CAS  PubMed  Google Scholar 

  • Niewiadomska G, Baksalerska-Pazera M, Riedel G (2009) The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 33:791–805

    PubMed  Google Scholar 

  • Nowak P (2016) Selective lifelong destruction of brain monoaminergic nerves through perinatal DSP-4 treatment. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Nowak P, Brus R, Kostrzewa RM (2001) Amphetamine-induced enhancement of neostriatal in vivo microdialysate dopamine content in rats, quinpirole-primed as neonates. Pol J Pharmacol 53:319–329

    CAS  PubMed  Google Scholar 

  • Nowak P, Kostrzewa RM, Kwięcinski A, Bortel A, Łabus L, Brus R (2005) Neurotoxic action of 6-hydroxydopamine on the nigrostriatal dopaminergic pathway in rats sensitized with D-amphetamine. J Physiol Pharmacol 56(2):325–333

    CAS  PubMed  Google Scholar 

  • Nowak P, Bortel A, Dąbrowska J, Oświęcimska J, Drosik M, Kwieciński A, Opara J, Kostrzewa RM, Brus R (2007) Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotox Res 11(2):131–144

    CAS  PubMed  Google Scholar 

  • Nowak P, Kostrzewa RA, Skaba D, Kostrzewa RM (2010) Acute L-DOPA effect on hydroxyl radical- and DOPAC-levels in striatal microdialysates of Parkinsonian rats. Neurotox Res 17(3):299–304

    CAS  PubMed  Google Scholar 

  • Ong HH, Creveling CR, Daly JW (1969) The synthesis of 2,4,5-trihydroxyphenylalanine (6-hydroxydopa). A centrally active norepinephrine-depleting agent. J Med Chem 12(3):458–462

    CAS  PubMed  Google Scholar 

  • Ornoy A, Weinstein-Fudim L, Ergaz Z (2015) Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol 56:155–169

    CAS  PubMed  Google Scholar 

  • Oswiecimska J, Brus R, Szkilnik R, Nowak P, Kostrzewa RM (2000) 7-OH-DPAT, unlike quinpirole, does not prime a yawning response in rats. Pharmacol Biochem Behav 67(1):11–15

    CAS  PubMed  Google Scholar 

  • Papadeas ST, Breese GR (2014) 6-Hydroxydopamine lesioning of dopamine neurons in neonatal and adult rats induces age-dependent consequences. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 133–198. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_59

    Google Scholar 

  • Pappas BA, Davidson CM, Fortin T, Nallathamby S, Park GA, Mohr E, Wiley RG (1996) 192 IgG-saporin lesion of basal forebrain cholinergic neurons in neonatal rats. Brain Res Dev Brain Res 96(1–2):52–61

    CAS  PubMed  Google Scholar 

  • Pappas BA, Payne KB, Fortin T, Sherren N (2005) Neonatal lesion of forebrain cholinergic neurons: further characterization of behavioral effects and permanency. Neuroscience 133(2):485–492

    CAS  PubMed  Google Scholar 

  • Pariante CM (2015) Neuroscience, mental health and the immune system: overcoming the brain-mind-body trichotomy. Epidemiol Psychiatr Sci 27:1–5

    Google Scholar 

  • Paterak J, Stefański R (2014) 5,6- and 5,7-dihydroxytryptamines as serotoninergic neurotoxins. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 299–325. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_76

    Google Scholar 

  • Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    CAS  PubMed  Google Scholar 

  • Pelly L, Vardy C, Fernandez B, Newhook LA, Chafe R (2015) Incidence and cohort prevalence for autism spectrum disorders in the Avalon Peninsula, Newfoundland and Labrador. CMAJ Open 3(3):E276–E280. doi:10.9778/cmajo.20140056

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez SE, He B, Nadeem M, Wuu J, Scheff SW, Abrahamson EE, Ikonomovic MD, Mufson EJ (2015) Resilience of precuneus neurotrophic signaling pathways despite amyloid pathology in prodromal Alzheimer’s disease. Biol Psychiatry 77(8):693–703

    CAS  PubMed  Google Scholar 

  • Pérez-Gómez A, Tasker A (2014) Domoic acid as a neurotoxin. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 399–419. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_87

    Google Scholar 

  • Perna MK, Brown RW (2013) Adolescent nicotine sensitization and effects of nicotine on accumbal dopamine release in a rodent model of increased dopamine D2 receptor sensitivity. Behav Brain Res 242:102–109

    CAS  PubMed  Google Scholar 

  • Petrosini L, De Bartolo P, Tutuli D (2014) Neurotoxic effects, mechanisms and outcome of 192-IgG saporin. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 591–609. ISBN 978-1-4614-5835-7 (print); ISBN 978-1-4614-5836-4 (eBook); ISBN 978-1-4614-7458-6 (print and electronic bundle). doi:10.1007/978-1-4614-5836-4_79

    Google Scholar 

  • Petrosini L, De Bartolo P, Cutuli D, Gelfo F (2016) Perinatal IgG saporin as neuroteratogen. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Mitchell AL, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    CAS  PubMed  Google Scholar 

  • Pyndt Jørgensen B, Krych L, Pedersen TB, Plath N, Redrobe JP, Hansen AK, Nielsen DS, Pedersen CS, Larsen C, Sørensen DB (2015) Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol Behav 141:32–39

    PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    CAS  PubMed  Google Scholar 

  • Radonjić NV, Knezević ID, Vilimanovich U, Kravić-Stevović T, Marina LV, Nikolić T, Todorović V, Bumbasirević V, Petronijević ND (2010) Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology 58(4–5):739–745

    PubMed  Google Scholar 

  • Radonjić NV, Jakovcevski I, Bumbaširević V, Petronijević ND (2013) Perinatal phencyclidine administration decreases the density of cortical interneurons and increases the expression of neuregulin-1. Psychopharmacology 227(4):673–683

    PubMed  Google Scholar 

  • Ranger P, Ellenbroek BA (2016) Perinatal influences of valproate on brain and behavior: an animal model for autism. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ (2004) Calcium binding protein markers of GABA deficits in schizophrenia—postmortem studies and animal models. Neurotox Res 6(1):57–61

    PubMed  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235(1):93–103

    CAS  PubMed  Google Scholar 

  • Ricceri L, Calamandrei G, Berger-Sweeney J (1997) Different effects of postnatal day 1 versus 7 192 immunoglobulin G-saporin lesions on learning, exploratory behaviors, and neurochemistry in juvenile rats. Behav Neurosci 111(6):1292–1302

    CAS  PubMed  Google Scholar 

  • Ricceri L, Hohmann C, Berger-Sweeney J (2002) Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats. Brain Res 954(2):160–172

    CAS  PubMed  Google Scholar 

  • Ricceri L, Cutuli D, Venerosi A, Scattoni ML, Calamandrei G (2007) Neonatal basal forebrain cholinergic hypofunction affects ultrasonic vocalizations and fear conditioning responses in preweaning rats. Behav Brain Res 183(1):111–117

    CAS  PubMed  Google Scholar 

  • Robertson RT, Gallardo KA, Claytor KJ, Ha DH, Ku KH, Yu BP, Lauterborn JC, Wiley RG, Yu J, Gall CM, Leslie FM (1998) Neonatal treatment with 192 IgG-saporin produces long-term forebrain cholinergic deficits and reduces dendritic branching and spine density of neocortical pyramidal neurons. Cereb Cortex 8(2):142–155

    CAS  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Croog VJ (1997) Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol 11(2–3):417-422. Review

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M (2015) Parkinson’s disease as a result of aging. Aging Cell 14(3):293–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman-Urrestarazu A, Lindholm P, Moilanen I, Kiviniemi V, Miettunen J, Jääskeläinen E, Mäki P, Hurtig T, Ebeling H, Barnett JH, Nikkinen J, Suckling J, Jones PB, Veijola J, Murray GK (2015) Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence. Eur Child Adolesc Psychiatry 26 Aug 2015. [Epub ahead of print]

    Google Scholar 

  • Roos A, Kwiatkowski MA, Fouche JP, Narr KL, Thomas KG, Stein DJ, Donald KA (2015) White matter integrity and cognitive performance in children with prenatalmethamphetamine exposure. Behav Brain Res 279:62–67

    CAS  PubMed  Google Scholar 

  • Rosenberg PA, Loring R, Xie Y, Zaleskas V, Aizenman E (1991) 2,4,5-trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin. Proc Natl Acad Sci USA 88(11):4865–4869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross SB, Renyi AL (1976) On the long-lasting inhibitory effect of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP 4) on the active uptake of noradrenaline. J Pharm Pharmacol 28:458–459

    CAS  PubMed  Google Scholar 

  • Ross SB, Stenfors C (1915) DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res 27(1):15–30. Review

    PubMed  Google Scholar 

  • Ross SB, Johansson JG, Lindborg B, Dahlbom R (1973) Cyclizing compounds. I. Tertiary N-(2-bromobenzyl)-N-haloalkylamines with adrenergic blocking action. Acta Pharm Sueccica 10:29–42

    CAS  Google Scholar 

  • Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism–a current review of clinical and animal studies. Neurotoxicol Teratol 36:47–56. Review

    CAS  PubMed  Google Scholar 

  • Ruan L, Kang Z, Pei G, Le Y (2009) Amyloid deposition and inflammation in APPswe/PSIde9 mouse model of Alzheimer’s disease. Curr Alz Res 6:531–540

    CAS  Google Scholar 

  • Sabers A, Bertelsen FC, Scheel-Krüger J, Nyengaard JR, Møller A (2015) Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain” [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism. Neurosci Lett 588:203–207

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G (1972a) Degeneration of central and peripheral noradrenaline neurons produced by 6-hydroxy-DOPA. J Neurochem 19(6):1561–1575

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G (1972b) Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenaline neurons. Brain Res 40(2):563–568

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G, Fuxe K (1973) Mapping of central noradrenaline pathways with 6-hydroxy-DOPA. Brain Res 63:249–261

    CAS  PubMed  Google Scholar 

  • Sakai M, Kashiwahara M, Kakita A, Nawa H (2014) An attempt of non-human primate modeling of schizophrenia with neonatal challenges of epidermal growth factor. J Addict Res Ther 5:1

    Google Scholar 

  • Salavert J, Ramos-Quiroga JA, Moreno-Alcázar A, Caseras X, Palomar G, Radua J, Bosch R, Salvador R, McKenna PJ, Casas M, Pomarol-Clotet E (2015) Functional imaging changes in the medial prefrontal cortex in adult ADHD. J Atten Disord 2015 Oct 29. pii: 1087054715611492. [Epub ahead of print]

    Google Scholar 

  • Sanders JD, Happe HK, Bylund DB, Murrin LC (2011) Changes in postnatal norepinephrine alter alpha-2 adrenergic receptor development. Neuroscience 192:761–772

    CAS  PubMed  Google Scholar 

  • Scattoni ML, Calamandrei G, Ricceri L (2003) Neonatal cholinergic lesions and development of exploration upon administration of the GABAa receptor agonist muscimol in preweaning rats. Pharmacol Biochem Behav 76(2):213–221

    CAS  PubMed  Google Scholar 

  • Schroeder SR, Oster-Granite ML, Berkson G, Bodfish JW, Breese GR, Cataldo MF, Cook EH, Crnic LS, DeLeon I, Fisher W, Harris JC, Horner RH, Iwata B, Jinnah HA, King BH, Lauder JM, Lewis MH, Newell K, Nyhan WL, Rojahn J, Sackett GP, Sandman C, Symons F, Tessel RE, Thompson T, Wong DF (2001) Self-injurious behavior: gene-brain-behavior relationships. Ment Retard Dev Disabil Res Rev 7(1):3–12

    CAS  PubMed  Google Scholar 

  • Sealey LA, Hughes BW, Steinemann A, Pestaner JP, Gene Pace D, Bagasra O (2015) Environmental factors may contribute to autism development and male bias: Effects of fragrances on developing neurons. Environ Res 142:731–738

    CAS  PubMed  Google Scholar 

  • Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219

    CAS  PubMed  Google Scholar 

  • Shaywitz BA, Klopper JH, Yager RD, Gordon JW (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature 261(5556):153–155

    CAS  PubMed  Google Scholar 

  • Shaywitz BA, Yager RD, Klopper JH (1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191(4224):305–308

    CAS  PubMed  Google Scholar 

  • Siniscalco D (2015) Commentary: the impact of neuroimmune alterations in autism spectrum disorder. Front Psychiatry 6:145

    PubMed  PubMed Central  Google Scholar 

  • Sircar R (2003) Postnatal phencyclidine-induced deficit in adult water maze performance is associated with N-methyl-D-aspartate receptor upregulation. Int J Dev Neurosci 21(3):159–167

    CAS  PubMed  Google Scholar 

  • Sitte HH, Freissmuth M (2010) The reverse operation of Na+/Cl-coupled neurotransmitter transporters—why amphetamines take two to tango. J Neurochem 112:340–355

    CAS  PubMed  Google Scholar 

  • Šlamberová R, Vrajová M, Schutová B, Mertlová M, Macúchová E, Nohejlová K, Hrubá L, Puskarčíková J, Bubeníková-Valešová V, Yamamotová A (2014) Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol Res 63(Suppl 4):S547–S558

    PubMed  Google Scholar 

  • Šlamberová R, Pometlová M, Macúchová E, Nohejlová K, Stuchlík A, Valeš K (2015) Do the effects of prenatal exposure and acute treatment of methamphetamineon anxiety vary depending on the animal model used? Behav Brain Res 292:361–369

    PubMed  Google Scholar 

  • Smith LM, Diaz S, LaGasse LL, Wouldes T, Derauf C, Newman E, Arria A, Huestis MA, Haning W, Strauss A, Della Grotta S, Dansereau LM, Neal C, Lester BM (2015) Developmental and behavioral consequences of prenatal methamphetamineexposure: a review of the Infant Development, Environment, and Lifestyle (IDEAL) study. Neurotoxicol Teratol 51:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder AM, Zigmond MJ, Lund RD (1986) Sprouting of serotoninergic afferents into striatum after dopamine-depleting lesions in infant rats: a retrograde transport and immunocytochemical study. J Comp Neurol 245(2):274–281

    CAS  PubMed  Google Scholar 

  • Soligo M, Protto V, Florenzano F, Bracci-Laudiero L, De Benedetti F, Chiaretti A, Manni L (2015) The mature/pro nerve growth factor ratio is decreased in the brain of diabetic rats: analysis by ELISA methods. Brain Res 1624:455–468

    CAS  PubMed  Google Scholar 

  • Sotoyama H, Zheng Y, Iwakura Y, Mizuno M, Aizawa M, Shcherbakova K, Wang R, Namba H, Nawa H (2011) Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 6(10):e25831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotoyama H, Namba H, Chiken S, Nambu A, Nawa H (2013) Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling. J Neurochem 126(4):518–528

    CAS  PubMed  Google Scholar 

  • Steardo L Jr, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C (2015) Does neuroinflammation turn on the flame in Alzheimer’s disease? Focus on astrocytes. Front Neurosci 9:259

    PubMed  PubMed Central  Google Scholar 

  • Stojković T, Radonjić NV, Velimirović M, Jevtić G, Popović V, Doknić M, Petronijević ND (2012) Risperidone reverses phencyclidine induced decrease in glutathione levels and alterations of antioxidant defense in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 39(1):192–199

    PubMed  Google Scholar 

  • Sygnecka K, Heine C, Scherf N, Fasold M, Binder H, Scheller C, Franke H (2015) Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures. Int J Dev Neurosci 40:1–11

    CAS  PubMed  Google Scholar 

  • Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, Takano E, Hayata-Takano A, Hashimoto H, Ago Y, Matsuda T (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49

    CAS  PubMed  Google Scholar 

  • Tan L, Yu JT, Tan L (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323(1–2):1–8

    CAS  PubMed  Google Scholar 

  • Tartaglione AM, Venerosi A, Calamandrei G (2016) Anna Maria Tartaglione1,2, Aldina Venerosi 1, Gemma Calamandrei1Early life toxic insults and onset of sporadic neurodegenerative diseases. an overview of experimental studies. In: Kostrzewa RM, Archer T (eds) Neurotoxin modeling of brain disorders-lifelong outcomes in behavioral teratology. Springer, New York

    Google Scholar 

  • Tasker RA, Strain SM, Drejer J (1996) Selective reduction in domoic acid toxicity in vivo by a novel non-N-methyl-D-aspartate receptor antagonist. Can J Physiol Pharmacol 74:1047–1054

    CAS  PubMed  Google Scholar 

  • Teitelbaum J (1990) Acute manifestations of domoic acid poisoning: case presentations. Can Dis Wkly Rep 16:5–6

    PubMed  Google Scholar 

  • Terranova JP, Chabot C, Barnouin MC, Perrault G, Depoortere R, Griebel G, Scatton B (2005) SSR181507, a dopamine D(2) receptor antagonist and 5-HT(1A) receptor agonist, alleviates disturbances of novelty discrimination in a social context in rats, a putative model of selective attention deficit. Psychopharmacology 181(1):134–144

    CAS  PubMed  Google Scholar 

  • Thacker SK, Perna MK, Ward JJ, Schaefer TL, Williams MT, Kostrzewa RM, Brown RW (2006) The effects of adulthood olanzapine treatment on cognitive performance and neurotrophic factor content in male and female rats neonatally treated with quinpirole. Eur J Neurosci 24(7):2075–2083

    PubMed  Google Scholar 

  • Thoenen H, Tranzer JP (1968a) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 261(3):271–288

    Google Scholar 

  • Thoenen H, Tranzer JP (1968b) [On the possibility of chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine (6-OH-DA)]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 260(2):212–213. German

    Google Scholar 

  • Tizabi Y, Copeland RL Jr, Brus R, Kostrzewa RM (1999) Nicotine blocks quinpirole-induced behavior in rats: psychiatric implications. Psychopharmacol 145:433–441

    CAS  Google Scholar 

  • Tohmi M, Tsuda N, Mizuno M, Takei N, Frankland PW, Nawa H (2005) Distinct influences of neonatal epidermal growth factor challenge on adult neurobehavioral traits in four mouse strains. Behav Genet 35(5):615–629

    PubMed  Google Scholar 

  • Tohyama M, Maeda T, Kashiba A, Shimizu N (1974a) Fluorescence and electron microscopic analysis of axonal change of coerulo-cortical noradrenaline neuron system following destruction of locus coeruleus and administration of 6-hydroxydopa in the rat brain. Med J Osaka Univ 24(4):205–221

    CAS  PubMed  Google Scholar 

  • Tohyama M, Maeda T, Shimizu N (1974b) Detailed noradrenaline pathways of locus coeruleus neuron to the cerebral cortex with use of 6-hydroxydopa. Brain Res 79(1):139–144

    CAS  Google Scholar 

  • Tuszynski MH, Blesch A (2004) Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog Brain Res 146:441–449

    CAS  PubMed  Google Scholar 

  • Uchida H, Sakata H, Fujimura M, Niizuma K, Kushida Y, Dezawa M, Tominaga T (2015) Experimental model of small subcortical infarcts in mice with long-lasting functional disabilities. Brain Res 1629:318–328

    CAS  PubMed  Google Scholar 

  • Uhrbrand A, Stenager E, Pedersen MS, Dalgas U (2015) Parkinson’s disease and intensive exercise therapy—a systematic review and meta-analysis of randomized controlled trials. J Neurol Sci 353(1–2):9–19

    PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Google Scholar 

  • Verdoorn TA, Johansen TH, Drejer J, Nielsen EO (1994) Selective block of recombinant GluR6 receptors by NS-102, a novel non-NMDA receptor antagonist. Eur J Pharmacol 269:43–49

    CAS  PubMed  Google Scholar 

  • Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2015) Glia in the pathogenesis of neurodegerative disease. Biochem Soc Trans 42(5):1291–1301

    Google Scholar 

  • Vieira AC, Aleman N, Cifuentes JM, Bermudez R, Lopez Pena M, Botana LM (2015) Brain pathology in adult rats treated with domoic acid. Veterinary Pathol 52:1077–1086

    CAS  Google Scholar 

  • Visser JE, Smith DW, Moy SS, Breese GR, Friedmann T, Rothstein JD, Jinnah HA (2001) Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. Brain Res Dev Brain Res 133(2):127–139

    Google Scholar 

  • Vorhees CV, Ahrens KG, Acuff-Smith KD, Schilling MA, Fisher JE (1994a) Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology 114(3):392–401

    CAS  PubMed  Google Scholar 

  • Vorhees CV, Ahrens KG, Acuff-Smith KD, Schilling MA, Fisher JE (1994b) Methamphetamine exposure during early postnatal development in rats: II. Hypoactivity and altered responses to pharmacological challenge. Psychopharmacology 114(3):402–408

    CAS  PubMed  Google Scholar 

  • Vorhees CV, Skelton MR, Grace CE, Schaefer TL, Graham DL, Braun AA, Williams MT (2009) Effects of (+)-methamphetamine on path integration and spatial learning, but not locomotor activity or acoustic startle, align with the stress hyporesponsive period in rats. Int J Dev Neurosci 27(3):289–298

    CAS  PubMed  Google Scholar 

  • Vrajová M, Schutová B, Klaschka J, Stěpánková H, Rípová D, Šlamberová R (2014) Age-related differences in NMDA receptor subunits of prenatallymethamphetamine-exposed male rats. Neurochem Res 39(11):2040–2046

    PubMed  Google Scholar 

  • Waddington JL (1990) Spontaneous orofacial movements induced in rodents by very long-term neuroleptic drug administration: phenomenology, pathophysiology and putative relationship to tardive dyskinesia. Psychopharmacology 101:431–447

    CAS  PubMed  Google Scholar 

  • Waddington JL, Cross AJ, Gamble SJ, Bourne RC (1983) Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment. Science 220:530–532

    CAS  PubMed  Google Scholar 

  • Waite JJ, Chen AD, Wardlow ML, Wiley RG, Lappi DA, Thal LJ (1995) 192 immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells. Neuroscience 65(2):463–476

    CAS  PubMed  Google Scholar 

  • Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107(4):535–550

    CAS  PubMed  Google Scholar 

  • Wang Y, Musich PR, Serrano MA, Zou Y, Zhang J, Zhu MY (2014) Effects of DSP4 on the noradrenergic phenotypes and its potential molecular mechanisms in SH-SY5Y cells. Neurotox Res 25(2):193–207

    PubMed  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086

    CAS  PubMed  Google Scholar 

  • Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG (1994) Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 14(10):5986–5995

    CAS  PubMed  PubMed Central  Google Scholar 

  • White IM, Minamoto T, Odell JR, Mayhorn J, White W (2009) Brief exposure to methamphetamine (METH) and phencyclidine (PCP) during late development leads to long-term learning deficits in rats. Brain Res 1266:72–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingate M, Kirby RS, Pettygrove S, Cunniff C, Schulz E, Ghosh T, Robinson C, Lee LC, Landa R, Constantino J, Fitzgerald R, Zahorodny W, Daniels J, Nicholas J, Charles J, McMahon W, Bilder D, Durkin M, Baio J, Christensen D, Braun KV, Clayton H, Goodman A, Doernberg N, Yeargin-Allsopp M, Lott E, Mancilla KC, Hudson A, Kast K, Jolly K, Chang A, Harrington R, Fitzgerald R, Shenouda J, Bell P, Kingsbury C, Bakian A, Henderson A, Arneson C, Washington A, Frenkel G, Wright V (2014) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 63(2):1–21

    Google Scholar 

  • Winn LM, Wells PG (1999) Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity. Free Radic Biol Med 26(3–4):266–274

    CAS  PubMed  Google Scholar 

  • Wischhof L, Irrsack E, Osorio C, Koch M (2015) Prenatal LPS-exposure—a neurodevelopmental rat model of schizophrenia—differentially affects cognitive functions, myelination, and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 57:17–30

    CAS  PubMed  Google Scholar 

  • Wong DF, Harris JC, Naidu S, Yokoi F, Marenco S, Dannals RF, Ravert HT, Yaster M, Evans A, Rousset O, Bryan RN, Gjedde A, Kuhar MJ, Breese GR (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci USA 93(11):5539–5543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi D, Peng YG, Ramsdell JS (1997) Domoic acid is a potent neurotoxin to neonatal rats. Nat Toxins 5:74–79

    CAS  PubMed  Google Scholar 

  • Xia Y, Qi F, Zou J, Yang J, Yao Z (2014) Influenza vaccination during early pregnancy contributes to neurogenesis and behavioral function in offspring. Brain Behav Immun 42:212–221

    CAS  PubMed  Google Scholar 

  • Zelazo PD, Carlson SM (2012) Hot and cool executive function in childhood and adolescence: development and plasticity. Child Devel Perspec. doi:10.1111/j.1750-8606.2012.00246.x

    Article  Google Scholar 

  • Zelazo PD, Müller U, Frye D, Marcovitch S, Argitis G, Boseovski J, Chiang JK, Hongwanishkul D, Schuster BV, Sutherland A (2003) The development of executive function in early childhood. Monogr Soc Res Child Dev 68(3):vii–137

    Google Scholar 

  • Zelazo PD, Craik FI, Booth L (2004) Executive function across the life span. Acta Psychol 115(2–3):167–183

    Google Scholar 

  • Zhu F, Zheng Y, Ding YQ, Liu Y, Zhang X, Wu R, Guo X, Zhao J (2014a) Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of liposaccharide in rats. PLoS One 9(4):e93966

    PubMed  PubMed Central  Google Scholar 

  • Zhu F, Zhang L, Ding YQ, Zhao J, Zheng Y (2014b) Neonatal intrahippocampal injection of liposaccharide induces deficits in social behavior and prepulse inhibition and microgial activation in rats: implication for a new schizophrenia animal model. Brain Behav Immun 38:166–174

    CAS  PubMed  Google Scholar 

  • Zieher LM, Jaim-Etcheverry G (1973) Regional differences in the long-term effect of neonatal 6-hydroxydopa treatment on rat brain noradrenaline. Brain Res 60(1):199–207

    CAS  PubMed  Google Scholar 

  • Zieher LM, Jaim-Etcheverry G (1975a) 6-hydroxydopa during development of central adrenergic neurons produces different long-term changes in rat brain noradrenaline. Brain Res 86(2):271–281

    CAS  PubMed  Google Scholar 

  • Zieher LM, Jaim-Etcheverry G (1975b) Different alterations in the development of the noradrenergic innervation of the cerebellum and the brain stem produced by neonatal 6-hydroxydopa. Life Sci 17(6):987–991

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Archer, T., Kostrzewa, R.M. (2015). Neuroteratology and Animal Modeling of Brain Disorders. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_434

Download citation

Publish with us

Policies and ethics