Skip to main content

Lifelong Rodent Model of Tardive Dyskinesia—Persistence After Antipsychotic Drug Withdrawal

  • Chapter
  • First Online:
Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

Tardive dyskinesia (TD), first appearing in humans after introduction of the phenothiazine class of antipsychotics in the 1950s, is now recognized as an abnormality resulting predominately by long-term block of dopamine (DA) D2 receptors (R). TD is thus reproduced in primates and rodents by chronic administration of D2-R antagonists. Through a series of studies predominately since the 1980s, it has been shown in rodent modeling of TD that when haloperidol or other D2-R antagonist is added to drinking water, rats develop spontaneous oral dyskinesias, vacuous chewing movements (VCMs), after ~3 months, and this TD is associated with an increase in the number of striatal D2-R. This TD persists for the duration of haloperidol administration and another ~2 months after haloperidol withdrawal. By neonatally lesioning dopaminergic nerves in brain in neonatal rats with 6-hydroxydopamine (6-OHDA), it has been found that TD develops sooner, at ~2 months, and also is accompanied by a much higher number of VCMs in these haloperidol-treated lesioned rats, and the TD persists lifelong after haloperidol withdrawal, but is not associated with an increased D2-R number in the haloperidol-withdrawn phase. TD apparently is related in part to supersensitization of both D1-R and serotoninergic 5-HT2-R, which is also a typical outcome of neonatal 6-OHDA (n6-OHDA) lesioning. Testing during the haloperidol-withdrawn phase in n6-OHDA rats displaying TD reveals that receptor agonists and antagonists of a host of neuronal phenotypic classes have virtually no effect on spontaneous VCM number, except for 5-HT2-R antagonists which acutely abate the incidence of VCMs in part. Extrapolating to human TD, it appears that (1) 5-HT2-R supersensitization is the crucial alteration accounting for persistence of TD, (2) dopaminergic—perhaps age-related partial denervation—is a risk factor for the development of TD, and (3) 5-HT2-R antagonists have the therapeutic potential to alleviate TD, particularly if/when an antipsychotic D2-R blocker is withdrawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnt J, Hyttel J, Perregard J (1987) Dopamine D-1 receptor agonists combined with the selective D-2 agonist, quinpirole, facilitate the expression of oral stereotyped behaviour in rats. Eur J Pharmacol 133:137–145

    Article  CAS  Google Scholar 

  • Baldessarini RJ, Cohen BM, Teicher MH (1988) Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry, 45(1):79–91. Review. PMID: 2892478

    Article  CAS  Google Scholar 

  • Berger TW, Kaul S, Stricker EM, Zigmond MJ (1985) Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats. Brain Res 366:354–358

    Article  Google Scholar 

  • Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Crotty K, Mueller RA (1984) Behavioural differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J Pharmacol Exp Ther 231:343–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breese GR, Baumeister A, Napier TC, Frye GD, Mueller RA (1985a) Evidence that D1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine. J Pharmacol Exp Ther 235:287–295

    CAS  PubMed  Google Scholar 

  • Breese GR, Napier TC, Mueller RA (1985b) Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: functional supersensitivity of D1 dopamine receptors in neonatally lesioned rats. J Pharmacol Exp Ther 234:447–455

    CAS  PubMed  Google Scholar 

  • Breese GR, Duncan GE, Napier TC, Bondy SC, Iorio LC, Mueller RA (1987) 6-Hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into the nucleus accumbens and striatum without changing dopamine antagonist binding. J Pharmacol Exp Ther 240:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brus R, Kostrzewa RM, Perry KW, Fuller RW (1994) Supersensitization of the oral response to SKF 38393 in neonatal 6-hydroxydopamine-lesioned rats is eliminated by neonatal 5,7-dihydroxytryptamine treatment. J Pharmacol Exp Ther 268:231–237

    CAS  PubMed  Google Scholar 

  • Casey DE (1987) Tardive dyskinesia, In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 1411–1419

    Google Scholar 

  • Criswell H, Mueller RA, Breese GR (1989) Priming of D1-dopamine receptor responses: long-lasting behavioral supersensitivity to a D1-dopamine agonist following repeated administration to neonatal 6-OHDA-lesioned rats. J Neurosci 9:125–133

    Article  CAS  Google Scholar 

  • Descarries L, Soghomonian J-J, Garcia S, Doucet G, Bruno JP (1992) Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denervation with 6-hydroxydopamine. Brain Res 569:1–13

    Article  CAS  Google Scholar 

  • Descarries L, Soucy J-P, Lafaille F, Mrini A, Tanguay R (1995) Evaluation of three transporter ligands as quantitative markers of serotonin innervation density in rat brain. Synapse 211:131–139

    Article  Google Scholar 

  • Dewar KM, Soghomonian J-J, Bruno JP, Descarries L, Reader TA (1990) Elevation of dopamine D2 but not D1 dopamine receptors in adult rat neostriatum after neonatal 6-hydroxydopamine denervation. Brain Res 536:287–296

    Article  CAS  Google Scholar 

  • Doucet G, Descarries L, Garcia S (1986) Quantification of the dopamine innervation in adult rat neostriatum. Neuroscience 19:427–445

    Article  CAS  Google Scholar 

  • Duncan GE, Criswell HE, McCown TJ, Paul IA, Mueller RA, Breese GR (1987) Behavioral and neurochemical responses to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine. J Pharmacol Exp Ther 243:1027–1034

    CAS  PubMed  Google Scholar 

  • El Mansari M, Radja F, Ferron A, Reader TA, Molina-Holgado E, Descarries L (1994) Hypersensitivity to serotonin and its agonists in serotonin-hyperinnervated neostriatum after neonatal dopamine denervation. Eur J Pharmacol 261:171–178

    Article  Google Scholar 

  • Ellison GD, See RE (1989) Rats administered chronic neuroleptics develop oral movements which are similar in form to those in humans with tardive dyskinesia. Psychopharmacology 98:564–566

    Article  CAS  Google Scholar 

  • Gong L, Kostrzewa RM (1992) Supersensitized oral responses to a serotonin agonist in neonatal 6-OHDA-treated rats. Pharmacol Biochem Behav 41:621–623

    Article  CAS  Google Scholar 

  • Gong L, Kostrzewa RM, Fuller RW, Perry KW (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system. J Pharmacol Exp Ther 261:1000–1007

    CAS  PubMed  Google Scholar 

  • Gong L, Kostrzewa RM, Brus R, Fuller RW, Perry KW (1993) Ontogenetic SKF 38393 treatments sensitize dopamine D1 receptors in neonatal 6-OHDA-lesioned rats. Dev Brain Res 76:59–65

    Article  CAS  Google Scholar 

  • Gong L, Kostrzewa RM, Li C (1994) Neonatal 6-hydroxydopamine and adult SKF 38393 treatments alter dopamine D1 receptor mRNA levels: absence of other neurochemical associations with the enhanced behavioral responses of lesioned rats. J Neurochem 63:1282–1290

    Article  CAS  Google Scholar 

  • Gunne LM, Growdon J, Glaeser B (1982) Oral dyskinesia in rats following brain lesions and neuroleptic drug administration. Psychopharmacology 77(2):134–139

    Article  CAS  Google Scholar 

  • Huang N-Y, Kostrzewa RM, Li C, Perry KW, Fuller RW (1997) Increased spontaneous oral dyskinesias persist in haloperidol-withdrawn rats neonatally lesioned with 6-hydroxydopamine: absence of an association with the Bmax for [3H]raclopride binding to neostriatal homogenates. J Pharmacol Exp Ther 280:268–276

    CAS  PubMed  Google Scholar 

  • Jeste DV, Caligiuri MP (1993) Tardive dyskinesia. Schizophr Bull 19:303–315

    Article  CAS  Google Scholar 

  • Koshikawa N, Aoki S, Tomiyama M, Maruyama Y, Kobayashi M (1987) Sulpiride injection into the dorsal striatum increases methamphetamine-induced gnawing in rats. Wur J Pharmacol 133:119–125

    CAS  Google Scholar 

  • Kostrzewa RM (1995) Dopamine receptor supersensitivity. Neurosci Biobehav Rev 19:1–17

    Article  CAS  Google Scholar 

  • Kostrzewa RM, Gong L (1991) Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA. Pharmacol Biochem Behav 39:677–682

    Article  CAS  Google Scholar 

  • Kostrzewa RM, Hamdi A (1991) Potentiation of spiperone-induced oral activity in rats after neonatal 6-hydroxydopamine. Pharmacol Biochem Behav 38:215–218

    Article  CAS  Google Scholar 

  • Kostrzewa RM, Reader TA, Descarries L (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J Neurochem 70:889–898

    Article  CAS  Google Scholar 

  • Kostrzewa RM, Huang NY, Kostrzewa JP, Nowak P, Brus R (2007) Modeling tardive dyskinesia: predictive 5-HT2C receptor antagonist treatment. Neurotox Res 11(1):41–50

    Article  CAS  Google Scholar 

  • Levin ED, See RE, South D (1989) Effects of dopamine D1 and D2 receptor antagonists on oral activity in rats. Pharmacol Biochem Behav 34:43–48

    Article  CAS  Google Scholar 

  • Luthman J, Botioli B, Tustsumi T, Verhofstad A, Jonsson G (1987) Sprouting of striatal serotonin nerve terminals following selective lesions of nigro-striatal dopamine neurons in neonatal rat. Brain Res Bull 19:269–274

    Article  CAS  Google Scholar 

  • Molloy AG, Waddington JL (1988) Behavioural responses to the selective D1-dopamine receptor agonist R-SK&F 38393 and the selective D2-agonist RU 24213 in young compared with aged rat. Br J Pharmacol 95:335–342

    Article  CAS  Google Scholar 

  • Morgenstern H, Glazer WM (1993) Identifying risk factors for tardive dyskinesia among long-term outpatients maintained with neuroleptic medications. Results of the Yale Tardive Dyskinesia Study. Arch Gen Psychiatry 50(9):723–733

    Article  CAS  Google Scholar 

  • Mrini A, Soucy J-P, Lafaille F, Lemoine P, Descarries L (1995) Quantification of the serotonin hyperinnervation in adult rat neostriatum after neonatal 6-hydroxydopamine lesion of nigral dopamine neurons. Brain Res 669:303–308

    Article  CAS  Google Scholar 

  • Murray AM, Waddington JL (1989) The induction of grooming and vacuous chewing by a series of selective D-1 dopamine receptor agonists: two directions of D-1:D-2 interaction. Eur J Pharmacol 160:377–387

    Article  CAS  Google Scholar 

  • Plech A, Brus R, Kalbfleisch JH, Kostrzewa RM (1995) Enhanced oral activity responses to intrastriatal SKF 38393 and m-CPP are attenuated by intrastriatal mianserin in neonatal 6-OHDA-lesioned rats. Psychopharmacology 119:466–473

    Article  CAS  Google Scholar 

  • Radja F, El Mansari M, Soghomonian J-J, Dewar KM, Ferron A, Reader TA, Descarries L (1993a) Changes in D1 and D2 receptors in adult rat neostriatum after neonatal dopamine denervation: quantitative data from ligand binding, in situ hybridization and iontophoresis. Neuroscience 57:635–648

    Article  CAS  Google Scholar 

  • Radja F, Descarries L, Dewar KM, Reader TA (1993b) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606:273–285

    Article  CAS  Google Scholar 

  • Rana AQ, Chaudry ZM, Blanchet PJ (2013) New and emerging treatments for symptomatic tardive dyskinesia. Drug Des Devel Ther 7:1329–1340. Review. PMID: 24235816

    Google Scholar 

  • Rosengarten H, Schweitzer JW, Friedhoff AJ (1983a) Induction of oral dyskinesias in naïve rats by D1 stimulation. Life Sci 33:2479–2482

    Article  CAS  Google Scholar 

  • Rosengarten H, Schweitzer JW, Egawa J, Friedhoff AJ (1983b) Diminished D2 dopamine receptor function and the emergence of repetitive jaw movements. Adv Exp Med Biol 235:159–169

    Article  Google Scholar 

  • Rosengarten H, Schweitzer JW, Egawa J, Friedhoff AJ (1986) Diminished D2 dopamine receptor function and the emergence of repetitive jaw movements. Adv Exp Med Biol 235:159–167

    Article  Google Scholar 

  • Rupniak NMJ, Jenner P, Marsden CD (1985) Pharmacological characterization of spontaneous or drug-associated purposeless chewing movements in rats. Psychopharmacology (Berlin) 85:71–79

    Article  CAS  Google Scholar 

  • Snyder AM, Zigmond MJ, Lund RD (1986) Sprouting of serotonergic afferents into striatum after dopamine depleting lesions in infant rats: a retrograde transport and immunocytochemical study. J Comp Neurol 245:274–281

    Article  CAS  Google Scholar 

  • Stachowiak MK, Bruno JP, Snyder AM, Stricker EM, Zigmond MJ (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Res 291:164–167

    Article  CAS  Google Scholar 

  • Towle AC, Criswell HE, Maynard EH, Lauder JM, Joh RH, Mueller RA, Breese GR (1989) Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study. Pharmacol Biochem Behav 34:367–374

    Article  CAS  Google Scholar 

  • van Harten PN, Tenback DE (2011) Tardive dyskinesia: clinical presentation and treatment. Int Rev Neurobiol 98:187–210. Review. PMID: 21907088

    Google Scholar 

  • Waddington JL (1990) Spontaneous orofacial movements induced in rodents by very long-term neuroleptic drug administration: Phenomenology, pathophysiology and putative relationship to tardive dyskinesia. Psychopharmacology (Berlin) 101:431–447

    Article  CAS  Google Scholar 

  • Waddington JL, Cross AJ, Gamble SJ, Bourne RC (1983) Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment. Science 220:530–532

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kostrzewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kostrzewa, R.M., Brus, R. (2015). Lifelong Rodent Model of Tardive Dyskinesia—Persistence After Antipsychotic Drug Withdrawal. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_395

Download citation

Publish with us

Policies and ethics