Skip to main content

Circadian Insights into Motivated Behavior

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

For an organism to be successful in an evolutionary sense, it and its offspring must survive. Such survival depends on satisfying a number of needs that are driven by motivated behaviors, such as eating, sleeping, and mating. An individual can usually only pursue one motivated behavior at a time. The circadian system provides temporal structure to the organism’s 24 hour day, partitioning specific behaviors to particular times of the day. The circadian system also allows anticipation of opportunities to engage in motivated behaviors that occur at predictable times of the day. Such anticipation enhances fitness by ensuring that the organism is physiologically ready to make use of a time-limited resource as soon as it becomes available. This could include activation of the sympathetic nervous system to transition from sleep to wake, or to engage in mating, or to activate of the parasympathetic nervous system to facilitate transitions to sleep, or to prepare the body to digest a meal. In addition to enabling temporal partitioning of motivated behaviors, the circadian system may also regulate the amplitude of the drive state motivating the behavior. For example, the circadian clock modulates not only when it is time to eat, but also how hungry we are. In this chapter we explore the physiology of our circadian clock and its involvement in a number of motivated behaviors such as sleeping, eating, exercise, sexual behavior, and maternal behavior. We also examine ways in which dysfunction of circadian timing can contribute to disease states, particularly in psychiatric conditions that include adherent motivational states.

‘Time’ he said, ‘is what keeps everything from happening at once’.

Ray Cummings, The Girl in the Golden Atom, 1922.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M, Del Carmen Basualdo M, Escobar C, Buijs RM (2011) Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci U S A 108:5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alibhai FJ, Tsimakouridze EV, Reitz CJ, Pyle WG, Martino TA (2015) Consequences of circadian and sleep disturbances for the cardiovascular system. Can J Cardiol 31:860–872

    Article  PubMed  Google Scholar 

  • Alleva JJ, Waleski MV, Alleva FR (1971) A biological clock controlling the estrous cycle of the hamster. Endocrinology 88:1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Angeles-Castellanos M, Mendoza J, Escobar C (2007) Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144:344–355

    Article  CAS  PubMed  Google Scholar 

  • Angeles-Castellanos M, Amaya JM, Salgado-Delgado R, Buijs RM, Escobar C (2011) Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats. J Biol Rhythms 26:324–334

    Article  CAS  PubMed  Google Scholar 

  • Antle MC (2015) Sleep: neural systems. In: Wright JD (ed) International encyclopedia of the social & behavioral sciences, 2nd edn. Elsevier, Oxford, pp 87–93

    Chapter  Google Scholar 

  • Antle MC, Mistlberger RE (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J Neurosci 20:9326–9332

    CAS  PubMed  Google Scholar 

  • Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    Article  CAS  PubMed  Google Scholar 

  • Antle MC, Silver R (2009) Neural basis of timing and anticipatory behaviors. Eur J Neurosci 30:1643–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Antle MC, van Diepen HC, Deboer T, Pedram P, Pereira RR, Meijer JH (2012) Methylphenidate modifies the motion of the circadian clock. Neuropsychopharmacology 37:2446–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity 17:2100–2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MR, Jensen G, Taylor K, Mezias C, Williamson C, Silver R, Simpson EH, Balsam PD (2015) A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task. Behav Neurosci 129:269–280

    Article  PubMed  Google Scholar 

  • Baron KG, Reid KJ (2014) Circadian misalignment and health. Int Rev Psychiatry 26:139–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Belvederi Murri M, Amore M, Menchetti M, Toni G, Neviani F, Cerri M, Rocchi MB, Zocchi D, Bagnoli L, Tam E, Buffa A, Ferrara S, Neri M, Alexopoulos GS, Zanetidou S (2015) Physical exercise for late-life major depression. Br J Psychiatry. doi:10.1192/bjp.bp.114.150516

  • Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86:646–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch LL, Billman J, Richards SS (1984) Time of day influences food acceptability. Appetite 5:109–116

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006) Adenosine and sleep homeostasis in the basal forebrain. J Neurosci 26:8092–8100

    Article  CAS  PubMed  Google Scholar 

  • Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, Abizaid A (2009) Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 164:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobrzynska KJ, Mrosovsky N (1998) Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J Comp Physiol A 182:251–258

    Article  CAS  PubMed  Google Scholar 

  • Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  • Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D (2010) Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 91:1550–1559

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32

    Article  CAS  PubMed  Google Scholar 

  • Caba M, Gonzalez-Mariscal G (2009) The rabbit pup, a natural model of nursing-anticipatory activity. Eur J Neurosci 30:1697–1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai A, Lehman MN, Lloyd JM, Wise PM (1997) Transplantation of fetal suprachiasmatic nuclei into middle-aged rats restores diurnal Fos expression in host. Am J Physiol 272:R422–R428

    CAS  PubMed  Google Scholar 

  • Caldelas I, Gonzalez B, Montufar-Chaveznava R, Hudson R (2009) Endogenous clock gene expression in the suprachiasmatic nuclei of previsual newborn rabbits is entrained by nursing. Dev Neurobiol 69:47–59

    Article  CAS  PubMed  Google Scholar 

  • Challet E, Caldelas I, Graff C, Pevet P (2003) Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384:711–719

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10691–10702

    CAS  PubMed  Google Scholar 

  • Corkum P, Panton R, Ironside S, Macpherson M, Williams T (2008) Acute impact of immediate release methylphenidate administered three times a day on sleep in children with attention-deficit/hyperactivity disorder. J Pediatr Psychol 33:368–379

    Article  PubMed  Google Scholar 

  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Weitzman E, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depner CM, Stothard ER, Wright KP Jr (2014) Metabolic consequences of sleep and circadian disorders. Curr Diab Rep 14:507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewsbury DA (1981) Social dominance, copulatory behavior, and differential reproduction in deer mice (Peromyscus maniculatus). J Comp Physiol Psych 95:880–895

    Article  Google Scholar 

  • Duffy E (1957) The psychological significance of the concept of “arousal” or “activation”. Psychol Rev 64:265–275

    Article  CAS  PubMed  Google Scholar 

  • Edgar DM, Dement WC (1991) Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol 261:R928–R933

    CAS  PubMed  Google Scholar 

  • Eikelboom R, Lattanzio SB (2003) Wheel access duration in rats: II. Day-night and within-session changes. Behav Neurosci 117:825–832

    Article  PubMed  Google Scholar 

  • Everett JW, Sawyer CH (1950) A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology 47:198–218

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald K, Zucker I (1976) Circadian organization of the estrous cycle of the golden hamster. Proc Natl Acad Sci U S A 73:2923–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster RG, Kreitzman L (2014) The rhythms of life: what your body clock means to you! Exp Physiol 99:599–606

    Article  PubMed  Google Scholar 

  • Friedman L, Bergmann BM, Rechtschaffen A (1979) Effects of sleep deprivation on sleepiness, sleep intensity, and subsequent sleep in the rat. Sleep 1:369–391

    CAS  PubMed  Google Scholar 

  • Gallardo CM, Darvas M, Oviatt M, Chang CH, Michalik M, Huddy TF, Meyer EE, Shuster SA, Aguayo A, Hill EM, Kiani K, Ikpeazu J, Martinez JS, Purpura M, Smit AN, Patton DF, Mistlberger RE, Palmiter RD, Steele AD (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife 3:e03781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gard DE, Sanchez AH, Cooper K, Fisher M, Garrett C, Vinogradov S (2014) Do people with schizophrenia have difficulty anticipating pleasure, engaging in effortful behavior, or both? J Abnorm Psychol 123:771–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson EM, Humber SA, Jain S, Williams WP 3rd, Zhao S, Bentley GE, Tsutsui K, Kriegsfeld LJ (2008) Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149:4958–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel N, Stunkard AJ, Rogers NL, Van Dongen HP, Allison KC, O’Reardon JP, Ahima RS, Cummings DE, Heo M, Dinges DF (2009) Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythms 24:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Mariscal G, Caba M, Martinez-Gómez M, Bautista A, Hudson R (2015) Mothers and offspring: the rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm Behav, doi:10.1016/j.yhbeh.2015.05.011

  • Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  CAS  PubMed  Google Scholar 

  • Gore BB, Zweifel LS (2013) Genetic reconstruction of dopamine D1 receptor signaling in the nucleus accumbens facilitates natural and drug reward responses. J Neurosci 33:8640–8649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer SM, Goldstein AN, Walker MP (2013) The impact of sleep deprivation on food desire in the human brain. Nat Commun 4:2259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grota LJ, Ader R (1969) Continuous recording of maternal behaviour in Rattus norvegicus. Anim Behav 17:722–729

    Article  Google Scholar 

  • Gruber J, Miklowitz DJ, Harvey AG, Frank E, Kupfer D, Thase ME, Sachs GS, Ketter TA (2011) Sleep matters: sleep functioning and course of illness in bipolar disorder. J Affect Disord 134:416–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Harma MI, Hakola T, Akerstedt T, Laitinen JT (1994) Age and adjustment to night work. Occup Environ Med 51:568–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (1955) Drives and the C. N. S. (conceptual nervous system). Psychol Rev 62:243–254

    Article  CAS  PubMed  Google Scholar 

  • Honrado G, Mrosovsky N (1989) Arousal by sexual stimuli accelerates the re-entrainment of hamsters to phase advanced light-dark cycles. Behav Ecol Sociobiol 25:57–63

    Article  Google Scholar 

  • Hoshino K, Wakatsuki Y, Iigo M, Shibata S (2006) Circadian clock mutation in dams disrupts nursing behavior and growth of pups. Endocrinology 147:1916–1923

    Article  CAS  PubMed  Google Scholar 

  • Hurd MW, Zimmer KA, Lehman MN, Ralph MR (1995) Circadian locomotor rhythms in aged hamsters following suprachiasmatic transplant. Am J Physiol 269:R958–R968

    CAS  PubMed  Google Scholar 

  • Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23:888–894

    Article  CAS  PubMed  Google Scholar 

  • Janik D, Mrosovsky N (1993) Nonphotically induced phase shifts of circadian rhythms in the golden hamster: activity-response curves at different ambient temperatures. Physiol Behav 53:431–436

    Article  CAS  PubMed  Google Scholar 

  • Jilge B (1993) The ontogeny of circadian rhythms in the rabbit. J Biol Rhythms 8:247–260

    Article  CAS  PubMed  Google Scholar 

  • Juda M, Vetter C, Roenneberg T (2013) Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J Biol Rhythms 28:141–151

    Article  PubMed  Google Scholar 

  • Karatsoreos IN (2014) Links between circadian rhythms and psychiatric disease. Front Behav Neurosci 8:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kersten A, Strubbe JH, Spiteri NJ (1980) Meal patterning of rats with changes in day length and food availability. Physiol Behav 25:953–958

    Article  CAS  PubMed  Google Scholar 

  • Klerman EB, Boulos Z, Edgar DM, Mistlberger RE, Moore-Ede MC (1999) Circadian and homeostatic influences on sleep in the squirrel monkey: sleep after sleep deprivation. Sleep 22:45–59

    CAS  PubMed  Google Scholar 

  • Koizumi H, Kurabayashi N, Watanabe Y, Sanada K (2013) Increased anxiety in offspring reared by circadian clock mutant mice. PLoS ONE 8:e66021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konturek PC, Brzozowski T, Konturek SJ (2011) Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol 62:139–150

    CAS  PubMed  Google Scholar 

  • Kooij JJ, Bijlenga D (2013) The circadian rhythm in adult attention-deficit/hyperactivity disorder: current state of affairs. Expert Rev Neurother 13:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Kramer FM, Rock K, Engell D (1992) Effects of time of day and appropriateness on food intake and hedonic ratings at morning and midday. Appetite 18:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468:361–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Krout KE, Kawano J, Mettenleiter TC, Loewy AD (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110:73–92

    Article  CAS  PubMed  Google Scholar 

  • Krystal AD, Richelson E, Roth T (2013) Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 17:263–272

    Article  PubMed  Google Scholar 

  • Lamont EW, Patterson Z, Rodrigues T, Vallejos O, Blum ID, Abizaid A (2012) Ghrelin-deficient mice have fewer orexin cells and reduced cFOS expression in the mesolimbic dopamine pathway under a restricted feeding paradigm. Neuroscience 218:12–19

    Article  CAS  PubMed  Google Scholar 

  • Landry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290:R1527–R1534

    Article  CAS  PubMed  Google Scholar 

  • Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE (2007) The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J Biol Rhythms 22:467–478

    Article  PubMed  Google Scholar 

  • Landry GJ, Kent BA, Patton DF, Jaholkowski M, Marchant EG, Mistlberger RE (2011) Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PLoS ONE 6:e24187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry GJ, Opiol H, Marchant EG, Pavlovski I, Mear RJ, Hamson DK, Mistlberger RE (2012) Scheduled daily mating induces circadian anticipatory activity rhythms in the male rat. PLoS ONE 7:e40895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattanzio SB, Eikelboom R (2003) Wheel access duration in rats: I. Effects on feeding and running. Behav Neurosci 117:496–504

    Article  PubMed  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    CAS  PubMed  Google Scholar 

  • LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R (2009) Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci U S A 106:13582–13587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MM, Gerstner JR, Holtzman DM (2014) The sleep-wake cycle and Alzheimer’s disease: what do we know? Neurodegener Dis Manag 4:351–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisk RD (1969) Cyclic fluctuations in sexual responsiveness in the male rat. J Exp Zool 171:313–319

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Liu TY, Qu WM, Hong ZY, Urade Y, Huang ZL (2012) Dopamine is involved in food-anticipatory activity in mice. J Biol Rhythms 27:398–409

    Article  CAS  PubMed  Google Scholar 

  • Logan FA, Leavitt F (1992) Sexual free behavior in male rats (Rattus norvegicus). J Comp Psychol 106:37–42

    Article  CAS  PubMed  Google Scholar 

  • Looy H, Eikelboom R (1989) Wheel running, food intake, and body weight in male rats. Physiol Behav 45:403–405

    Article  CAS  PubMed  Google Scholar 

  • Mahoney CE, Brewer JM, Bittman EL (2013) Central control of circadian phase in arousal-promoting neurons. PLoS ONE 8:e67173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant EG, Mistlberger RE (1996) Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav 60:657–663

    Article  CAS  PubMed  Google Scholar 

  • Meijer JH, Robbers Y (2014) Wheel running in the wild. Proc Biol Sci 281

    Google Scholar 

  • Mendelson SD, Pfaus JG (1989) Level searching: a new assay of sexual motivation in the male rat. Physiol Behav 45:337–341

    Article  CAS  PubMed  Google Scholar 

  • Meza E, Waliszewski SM, Caba M (2011) Circadian nursing induces PER1 protein in neuroendocrine tyrosine hydroxylase neurones in the rabbit doe. J Neuroendocrinol 23:472–480

    Article  CAS  PubMed  Google Scholar 

  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103:12150–12155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49:429–454

    Article  PubMed  Google Scholar 

  • Mistlberger RE, Antle MC (2011) Entrainment of circadian clocks in mammals by arousal and food. Essays Biochem 49:119–136

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE, Marchant EG, Sinclair SV (1996) Nonphotic phase-shifting and the motivation to run: cold exposure reexamined. J Biol Rhythms 11:208–215

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE, Landry GJ, Marchant EG (1997) Sleep deprivation can attenuate light-induced phase shifts of circadian rhythms in hamsters. Neurosci Lett 238:5–8

    Article  CAS  PubMed  Google Scholar 

  • Model Z, Butler MP, LeSauter J, Silver R (2015) Suprachiasmatic nucleus as the site of androgen action on circadian rhythms. Horm Behav 73:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mollicone DJ, Van Dongen HP, Rogers NL, Banks S, Dinges DF (2010) Time of day effects on neurobehavioral performance during chronic sleep restriction. Aviat Space Environ Med 81:735–744

    Article  PubMed  Google Scholar 

  • Montúfar-Chaveznava R, Trejo-Muñoz L, Hernández-Campos O, Navarrete E, Caldelas I (2013) Maternal olfactory cues synchronize the circadian system of artificially raised newborn rabbits. PLoS ONE 8:e74048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  CAS  PubMed  Google Scholar 

  • Morgado E, Juarez C, Melo AI, Dominguez B, Lehman MN, Escobar C, Meza E, Caba M (2011) Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother-deprived neonatal rabbit pups. Eur J Neurosci 34:1807–1816

    Google Scholar 

  • Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol A 162:35–46

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N, Biello SM (1994) Nonphotic phase shifting in the old and the cold. Chronobiol Int 11:232–252

    Article  CAS  PubMed  Google Scholar 

  • Mueller DT, Herman G, Eikelboom R (1999) Effects of short- and long-term wheel deprivation on running. Physiol Behav 66:101–107

    Article  CAS  PubMed  Google Scholar 

  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  • Numan M (2007) Motivational systems and the neural circuitry of maternal behavior in the rat. Dev Psychobiol 49:12–21

    Article  CAS  PubMed  Google Scholar 

  • Ondo WG (2014) Sleep/wake problems in Parkinson’s disease: pathophysiology and clinicopathologic correlations. J Neural Transm 121(Suppl 1):S3–13

    Article  PubMed  CAS  Google Scholar 

  • O’Reardon JP, Ringel BL, Dinges DF, Allison KC, Rogers NL, Martino NS, Stunkard AJ (2004) Circadian eating and sleeping patterns in the night eating syndrome. Obes Res 12:1789–1796

    Article  PubMed  Google Scholar 

  • Pachón H, McGuire MK, Rasmussen KM (1995) Nutritional status and behavior during lactation. Physiol Behav 58:393–400

    Article  PubMed  Google Scholar 

  • Passos GS, Poyares D, Santana MG, D’Aurea CV, Youngstedt SD, Tufik S, de Mello MT (2011) Effects of moderate aerobic exercise training on chronic primary insomnia. Sleep Med 12:1018–1027

    Article  PubMed  Google Scholar 

  • Pauls S, Foley NC, Foley DK, LeSauter J, Hastings MH, Maywood ES, Silver R (2014) Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice. Eur J Neurosci 40:2528–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendergast JS, Branecky KL, Huang R, Niswender KD, Yamazaki S (2014) Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front Psychol 5:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaff DW, Martin EM, Faber D (2012) Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 35:468–476

    Article  CAS  PubMed  Google Scholar 

  • Piekarski DJ, Zhao S, Jennings KJ, Iwasa T, Legan SJ, Mikkelsen JD, Tsutsui K, Kriegsfeld LJ (2013) Gonadotropin-inhibitory hormone reduces sexual motivation but not lordosis behavior in female Syrian hamsters (Mesocricetus auratus). Horm Behav 64:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6:321–332

    Article  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  PubMed  Google Scholar 

  • Ramkisoensing A, Meijer JH (2015) Synchronization of biological clock neurons by light and peripheral feedback systems promotes circadian rhythms and health. Front Neurol 6:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinberg A, Motohashi Y, Bourdeleau P, Andlauer P, Levi F, Bicakova-Rocher A (1988) Alteration of period and amplitude of circadian rhythms in shift workers. With special reference to temperature, right and left hand grip strength. Eur J Appl Physiol Occup Physiol 57:15–25

    Article  CAS  PubMed  Google Scholar 

  • Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL (2014) The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 31:64–71

    Article  CAS  PubMed  Google Scholar 

  • Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931

    Article  PubMed  Google Scholar 

  • Richter SH, Gass P, Fuss J (2014) Resting is rusting: a critical view on rodent wheel-running behavior. Neuroscientist 20:313–325

    Article  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  CAS  PubMed  Google Scholar 

  • Robinson I, Reddy AB (2014) Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 588:2477–2483

    Article  CAS  PubMed  Google Scholar 

  • Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11:429–438

    Article  PubMed  Google Scholar 

  • Sachs B, Marsan E (1972) Male rats prefer sex to food after 6 days of food deprivation. Psychon Sci 28:47–49

    Article  Google Scholar 

  • Saini C, Brown SA, Dibner C (2015) Human peripheral clocks: applications for studying circadian phenotypes in physiology and pathophysiology. Front Neurol 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Salamone J (1988) Dopaminergic involvement in activational aspects of motivation: Effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Psychobiology 16:196–206

    CAS  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005a) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005b) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder AM, Colwell CS (2013) How to fix a broken clock. Trends Pharmacol Sci 34:605–619

    Article  CAS  PubMed  Google Scholar 

  • Sherwin CM (1998) Voluntary wheel running: a review and novel interpretation. Anim Behav 56:11–27

    Article  PubMed  Google Scholar 

  • Siegel PS (1961) Food intake in the rat in relation to the dark-light cycle. J Comp Physiol Psych 54:294–301

    Article  Google Scholar 

  • Siegel HI, Bast JD, Greenwald GS (1976) The effects of phenobarbital and gonadal steroids on periovulatory serum levels of luteinizing hormone and follicle-stimulating hormone in the hamster. Endocrinology 98:48–55

    Article  CAS  PubMed  Google Scholar 

  • Sinclair SV, Mistlberger RE (1997) Scheduled activity reorganizes circadian phase of Syrian hamsters under full and skeleton photoperiods. Behav Brain Res 87:127–137

    Article  CAS  PubMed  Google Scholar 

  • Smit AN, Patton DF, Michalik M, Opiol H, Mistlberger RE (2013) Dopaminergic regulation of circadian food anticipatory activity rhythms in the rat. PLoS ONE 8:e82381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141:846–850

    Article  PubMed  Google Scholar 

  • Steiner M, Katz RJ, Baldrighi G, Carroll BJ (1981) Motivated behavior and the estrous cycle in rats. Psychoneuroendocrinology 6:81–90

    Article  CAS  PubMed  Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    Article  PubMed  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25:346–363

    Article  CAS  PubMed  Google Scholar 

  • Sterniczuk R, Rusak B, Rockwood K (2014) Sleep disturbance in older ICU patients. Clin Interv Aging 9:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Stetson MH, Watson-Whitmyre M (1977) The neural clock regulating estrous cyclicity in hamsters: gonadotropin release following barbiturate blockade. Biol Reprod 16:536–542

    CAS  PubMed  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  • Strubbe JH, Spiteri NJ, Alingh Prins AJ (1986) Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiol Behav 36:647–651

    Article  CAS  PubMed  Google Scholar 

  • Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, Martinez D, Moore H, Balsam PD, Simpson EH, Javitch JA (2013) Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 18:1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (2014) Meals and snacks: distribution of meal patterns and snack occasions, by gender and age. In: What We Eat in America, NHANES 2011–2012

    Google Scholar 

  • Uth K, Sleigh R (2014) Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part II. studies. Biotechnol Biotechnol Equip 28:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Furth WR, van Ree JM (1994) Endogenous opioids and sexual motivation and performance during the light phase of the diurnal cycle. Brain Res 636:175–179

    Article  PubMed  Google Scholar 

  • Van Reeth O, Zhang Y, Zee PC, Turek FW (1994) Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Res 643:338–342

    Article  PubMed  Google Scholar 

  • Van Veen MM, Kooij JJ, Boonstra AM, Gordijn MC, Van Someren EJ (2010) Delayed circadian rhythm in adults with attention-deficit/hyperactivity disorder and chronic sleep-onset insomnia. Biol Psychiatry 67:1091–1096

    Article  PubMed  Google Scholar 

  • Verwey M, Amir S (2011) Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding. Neuroscience 192:304–311

    Article  CAS  PubMed  Google Scholar 

  • Verwey M, Khoja Z, Stewart J, Amir S (2007) Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147:277–285

    Article  CAS  PubMed  Google Scholar 

  • Verwey M, Khoja Z, Stewart J, Amir S (2008) Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats. Neurosci Lett 440:54–58

    Article  CAS  PubMed  Google Scholar 

  • Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW, Liposits Z, Kalló I (2010) Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan N (1999) Maternal entrainment in the circadian activity rhythm of laboratory mouse (C57BL/6J). Physiol Behav 68:157–162

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan N, Chandrashekaran MK (1985) Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature 317:530–531

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan N, Davis FC (1992) Maternal entrainment of tau mutant hamsters. J Biol Rhythms 7:65–74

    Article  CAS  PubMed  Google Scholar 

  • Vujovic N, Gooley JJ, Jhou TC, Saper CB (in press) Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol. doi:10.1002/cne.23812

  • Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 13:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Wasserman T, Wasserman LD (2015) The misnomer of attention-deficit hyperactivity disorder. Appl Neuropsychol Child 4:116–122

    Article  PubMed  Google Scholar 

  • Waterhouse J, Kao S, Edwards B, Weinert D, Atkinson G, Reilly T (2005) Transient changes in the pattern of food intake following a simulated time-zone transition to the east across eight time zones. Chronobiol Int 22:299–319

    Article  PubMed  Google Scholar 

  • Webb IC, Lehman MN, Coolen LM (2015) Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiol Behav 143:58–69

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whishaw IQ, Dringenberg HC, Comery TA (1992) Rats (Rattus norvegicus) modulate eating speed and vigilance to optimize food consumption: effects of cover, circadian rhythm, food deprivation, and individual differences. J Comp Psychol 106:411–419

    Article  CAS  PubMed  Google Scholar 

  • Williams WP 3rd, Kriegsfeld LJ (2012) Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne) 3:60

    Google Scholar 

  • Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ (2011) Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001a) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR (2001b) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Wulff K, Dijk DJ, Middleton B, Foster RG, Joyce EM (2012) Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry 200:308–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W (2014) Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 24:2838–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Antle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antle, M.C., Silver, R. (2015). Circadian Insights into Motivated Behavior. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_384

Download citation

Publish with us

Policies and ethics