Skip to main content

Methods for Dissecting Motivation and Related Psychological Processes in Rodents

  • Chapter
  • First Online:
Behavioral Neuroscience of Motivation

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97:8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Publishing, Arlington, VA, USA

    Book  Google Scholar 

  • Bailey MR, Jensen G, Taylor K, Mezias C, Williamson C, Silver R, Simpson EH, Balsam PD (2015) A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task. Behav Neurosci 129:269–280

    Article  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) The role of incentive learning in instrumental revaluation by specific satiety. Anim Learn Behav 26:46–59

    Article  Google Scholar 

  • Barch DM (2005) The relationships among cognition, motivation, and emotion in schizophrenia: how much and how little we know. Schizophr Bull 31:875–881

    Article  PubMed  Google Scholar 

  • Barch DM, Dowd EC (2010) Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull 36:919–934

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker JM, Zhang H, Villafane JJ, Wang TL, Torregrossa MM, Taylor JR (2014) Epigenetic and pharmacological regulation of 5HT3 receptors controls compulsive ethanol seeking in mice. Eur J Neurosci 39:999–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513

    Article  CAS  PubMed  Google Scholar 

  • Bolles RC, Hayward L, Crandall C (1981) Conditioned taste preferences based on caloric density. J Exp Psychol Anim Behav Process 7:59–69

    Article  CAS  PubMed  Google Scholar 

  • Burbridge JA, Barch DM (2007) Anhedonia and the experience of emotion in individuals with schizophrenia. J Abnorm Psychol 116:30–42

    Article  PubMed  Google Scholar 

  • Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP (2009) Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain Cogn 70:181–190

    Article  PubMed  Google Scholar 

  • Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I (2015) Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev 55:247–267

    Article  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci 25:962–970

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26:3141–3149

    Article  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci 31:11786–11794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew MR, Simpson EH, Kellendonk C, Herzberg WG, Lipatova O, Fairhurst S et al (2007) Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci 27:7731–7739

    Article  CAS  PubMed  Google Scholar 

  • Ellgood J, Crawley JN (2015) Behavioral and neuroanatomical phenotypes in mouse models of autism. Neurotherapuetics. doi:10.1007/s13311-015-0360-z

    Google Scholar 

  • Foussias G, Remington G (2010) Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull 36:359–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Gard DE, Kring AM, Gard MG, Horan WP, Green MF (2007) Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res 93:253–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Glendinning JL, Gresack J, Spector AC (2002) A high-throughput screening procedure for identifying mice with aberrant taste and oromotor function. Chem Senses 27:461–474

    Article  PubMed  Google Scholar 

  • Gomez J, Marin-Mendez J, Molero P, Atakan Z, Ortuno F (2015) Time perception networks and cognition in schizophrenia: a review and a proposal. Psychiatry Res 220:737–744

    Article  Google Scholar 

  • Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10:291–299

    Google Scholar 

  • Grill HJ, Norgren R (1978) The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 143:263–279

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Stanis JJ, Marquez-Avila H, Gulley JM (2008) A comparison of amphetamine- and methamphetamine-induced locomotor activity in rats: evidence for qualitative differences in behavior. Psychopharmacology 195:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond LJ (1980) The effect of contingency upon the appetitive conditioning of free-operant behavior. J Exp Anal Behav 34:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrnstein RJ (1961) Relative and absolute strength of response as a function of frequency of reinforcement. J Exp Anal Behav 4:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    Article  CAS  PubMed  Google Scholar 

  • Hogarty GE, Flesher S, Ulrich R, Carter M, Greenwald D, Pogue-Geile M et al (2004) Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Arch Gen Psychiat 61:866–876

    Article  PubMed  Google Scholar 

  • Izquierdo A, Belcher AM (2012) Rodent models of adaptive decision making. Methods Mol Biol 829:85–101

    Article  CAS  PubMed  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V et al (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615

    Article  CAS  PubMed  Google Scholar 

  • Killeen PR, Posadas-Sanchez D, Johansen EB, Thrailkill EA (2009) Progressive ratio schedules of reinforcement. J Exp Psychol Anim Behav Process 35:35–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a camkII transgene. Science 274:1678–1683

    Article  CAS  PubMed  Google Scholar 

  • Mayorga AJ, Popke EJ, Fogle CM, Paule MG (2000) Similar effects of amphetamine and methylphenidate on the performance of complex operant tasks in rats. Behav Brain Res 109:59–68

    Article  CAS  PubMed  Google Scholar 

  • McNamara CG, Davidson ES, Schenk S (1993) A comparison of the motor-activating effects of acute and chronic exposure to amphetamine and methylphenidate. Pharmacol Biochem Behav 45:729–732

    Article  CAS  PubMed  Google Scholar 

  • Medalia A, Choi J (2009) Cognitive remediation in schizophrenia. Neuropsychol Rev 19:353–364

    Article  PubMed  Google Scholar 

  • Mehiel R, Bolles RC (1984) Learned flavor preferences based on caloric outcome. Anim Learn Behav 12:421–427

    Article  Google Scholar 

  • Muscat R, Willner P (1989) Effects of dopamine receptor antagonists on sucrose consumption and preference. Psychopharmacology 99:98–102

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olausson P, Jentsch JD, Tronson N, Neve RL, Nestler EJ, Taylor JR (2006) DeltaFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. J Neurosci 26:9196–9204

    Article  CAS  PubMed  Google Scholar 

  • O’Tuathaigh CMP, Desbonnet L, Waddington JL (2014) Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms. Eur Neuropsychopharmacol 24:800–821

    Article  PubMed  Google Scholar 

  • O’Tuathaigh CMP, Moran PM, Waddington JL (2013) Genetic models of schizophrenia and related psychotic disorders: progress and pitfalls across the methodological “minefield”. Cell Tissue Res 354:247–257

    Article  PubMed  Google Scholar 

  • O’Tuathaigh CMP, Kirby BP, Moran PM, Waddington JL (2010) Mutant mouse models: Genotype-phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 36:271–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P (2015) Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 14:518–531

    Article  PubMed  Google Scholar 

  • Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do u-opioids cause increased hedonic impact of sweetness. J Neurosci 25:11777–11786

    Article  CAS  PubMed  Google Scholar 

  • Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402

    CAS  PubMed  Google Scholar 

  • Pecina S, Berridge KC, Parker LA (1997) Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol Biochem Behav 58:801–811

    Article  CAS  PubMed  Google Scholar 

  • Ribot T (1897) The psychology of emotions. W. Scott, London, UK

    Google Scholar 

  • Richardson NR, Roberts DCS (1996) Progressive ratio schedule of drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Roberts S (1981) Isolation of an internal clock. J Exp Psychol Anim Behav Process 7:242–268

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    Article  CAS  PubMed  Google Scholar 

  • Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S et al (2011) Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 69:928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss GP, Gold JM (2012) A new perspective on anhedonia in schizophrenia. Am J Psychiatry 169:364–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapold MA (1970) Are expectancies based upon different positive reinforcing events discriminably different? Learn Motivation 1:129–140

    Article  Google Scholar 

  • Velligan DI, Kern RS, Gold JM (2006) Cognitive rehabilitation for schizophrenia and the putative role of motivation and expectancies. Schizophr Bull 32:474–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward R, Kellendonk C, Simpson EH, Lipatova O, Drew MR, Fairhurst S, Kandel ER, Balsam PD (2009) Impaired timing precision produced by striatal D2 receptor overexpression is mediated by cognitive and motivational deficits. Behav Neurosci 123:720–730

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Simpson EH, Kandel ER, Balsam PD (2011) Modeling motivational deficits in mouse models of schizophrenia: Behavior analysis as a guide for neuroscience. Behav Processes 87:149–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JL, Kandel ER, Balsam PD (2012) Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 37:1699–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, R.D. (2015). Methods for Dissecting Motivation and Related Psychological Processes in Rodents. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_380

Download citation

Publish with us

Policies and ethics