Skip to main content

Self-Assembling Peptides Form Immune Suppressive Amyloid Fibrils Effective in Autoimmune Encephalomyelitis

  • Chapter
  • First Online:
Emerging and Evolving Topics in Multiple Sclerosis Pathogenesis and Treatments

Abstract

Amyloidogenic proteins have long been linked to neurodegenerative diseases. However, amyloid fibrils composed of six amino acids are protective in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). The reduction of pro-inflammatory cytokines, decrease in the number of inflammatory foci in the parenchyma and meninges of the brain and spinal cord, and amelioration of the neurological signs of EAE when amyloid fibril-forming hexapeptides are administered reveal that some fibrils provide benefit. The therapeutic activity of the amyloid fibrils arise from diverse pathways that include binding of pro-inflammatory mediators in the plasma, reduction of IL-6, TNF-α, and IFN-γ levels, and induction of type 1 interferon (IFN). Type 1 IFN has been used widely as a therapeutic agent for the treatment of MS and has been shown to be therapeutic in EAE with adoptive transfer of Th1 lymphocytes. However, type 1 IFN is known to exacerbate EAE with adoptive transfer of Th17 lymphocytes. Indeed, the amyloid fibril-forming peptide Tau 623–628 was therapeutic in Th1 adoptively transferred EAE, but ineffective in Th17 adoptively transferred EAE. However, the therapeutic effect of Tau 623–628 was restored in IFN-α/β receptor (IFNAR) knockout mice, indicating that other immune pathways independent of type 1 IFN induction play a role in the amelioration of EAE. Moreover, Amylin 28–33, a polar, non-ionizable peptide that does not form fibrils as rapidly as Tau 623–628, induces a small fraction of type 1 IFN compared to Tau 623–628 and is therapeutic in Th17 EAE. The diverse immunological pathways modulated by the self-assembling hexapeptides are under investigation with a goal to develop novel, safe, and potent therapeutics for neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arac A, Brownell SE, Rothbard JB, Chen C, Ko RM, Pereira MP, Albers GW, Steinman L, Steinberg GK (2011) Systemic augmentation of alphaB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc Natl Acad Sci USA 108:13287–13292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16:406–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell RC, Raman C, Steinman L (2011) Interferon-beta exacerbates Th17-mediated inflammatory disease. Trends Immunol 32:272–277

    Article  CAS  PubMed  Google Scholar 

  • Axtell RC, Raman C, Steinman L (2012) Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin Rev Allergy Immunol 44:114–120

    Article  Google Scholar 

  • Azevedo EP, Guimaraes-Costa AB, Torezani GS, Braga CA, Palhano FL, Kelly JW, Saraiva EM, Foguel D (2012) Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase. J Biol Chem 287:37206–37218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya J, Padmanabha Udupa EG, Wang J, Sharma KK (2006) Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry 45:3069–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22

    Article  CAS  PubMed  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Ann Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T, Frangione B (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293(Pt 1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gourdain P, Ballerini C, Nicot AB, Carnaud C (2012) Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J Neuroinflammation 9:25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant JL, Ghosn EE, Axtell RC, Herges K, Kuipers HF, Woodling NS, Andreasson K, Herzenberg LA, Herzenberg LA, Steinman L (2012) Reversal of paralysis and reduced inflammation from peripheral administration of beta-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med 4:145ra105

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260

    Article  CAS  PubMed  Google Scholar 

  • Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jang H, Arce FT, Ramachandran S, Capone R, Lal R, Nussinov R (2010) Beta-barrel topology of Alzheimer’s beta-amyloid ion channels. J Mol Biol 404:917–934

    Article  CAS  PubMed  Google Scholar 

  • Ji Z, Ke ZJ, Geng JG (2012) SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Immunol Cell Biol 90:388–395

    Article  CAS  PubMed  Google Scholar 

  • Karussis D, Michaelson DM, Grigoriadis N, Korezyn AD, Mizrachi-Koll R, Chapman S, Abramsky O, Chapman J (2003) Lack of apolipoprotein-E exacerbates experimental allergic encephalomyelitis. Mult Scler 9:476–480

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JB (2013) Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med 5:179ra142

    Article  Google Scholar 

  • Kurnellas MP, Brownell SE, Su L, Malkovskiy AV, Rajadas J, Dolganov G, Chopra S, Schoolnik GK, Sobel RA, Webster J, Ousman SS, Becker RA, Steinman L, Rothbard JB (2012) Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis. J Biol Chem 287:36423–36434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurnellas MP, Schartner JM, Fathman CG, Jagger A, Steinman L, Rothbard JB (2014) Mechanisms of action of therapeutic amyloidogenic hexapeptides in amelioration of inflammatory brain disease. J Exp Med 211:1847–1856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, Pensalfini A, Soriaga AB, Landau M, Teng PK, Cascio D, Glabe C, Eisenberg D (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177:244–249

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Conner K, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448:474–479

    Article  CAS  PubMed  Google Scholar 

  • Pangratz-Fuehrer S, Kaur K, Ousman SS, Steinman L, Liao YJ (2011) Functional rescue of experimental ischemic optic neuropathy with alphaB-crystallin. Eye (Lond) 25:809–817

    Article  CAS  Google Scholar 

  • Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci USA 106:14948–14953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothbard JB, Kurnellas MP, Brownell S, Adams CM, Su L, Axtell RC, Chen R, Fathman CG, Robinson WH, Steinman L (2012) Therapeutic effects of systemic administration of chaperone alphaB-crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 287:9708–9721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski JD, Mandell JW (2011) Phagocytic clearance in neurodegeneration. Am J Pathol 178:1416–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka N, Tanaka R, Tokuhara M, Kunugi S, Lee YF, Hamada D (2008) Amyloid fibril formation and chaperone-like activity of peptides from alphaA-crystallin. Biochemistry 47:2961–2967

    Article  CAS  PubMed  Google Scholar 

  • Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA 103:4074–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velayudhan L, Killick R, Hye A, Kinsey A, Guntert A, Lynham S, Ward M, Leung R, Lourdusamy A, To AW, Powell J, Lovestone S (2012) Plasma transthyretin as a candidate marker for Alzheimer’s disease. J Alzheimers Dis 28:369–375

    CAS  PubMed  Google Scholar 

  • Velotta JB, Kimura N, Chang SH, Chung J, Itoh S, Rothbard J, Yang PC, Steinman L, Robbins RC, Fischbein MP (2011) AlphaB-crystallin improves murine cardiac function and attenuates apoptosis in human endothelial cells exposed to ischemia-reperfusion. Ann Thorac Surg 91:1907–1913

    Article  PubMed  Google Scholar 

  • Weinger JG, Davies P, Acker CM, Brosnan CF, Tsiperson V, Bayewitz A, Shafit-Zagardo B (2012) Mice devoid of Tau have increased susceptibility to neuronal damage in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 71:422–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurnellas, M.P., Rothbard, J.B., Steinman, L. (2015). Self-Assembling Peptides Form Immune Suppressive Amyloid Fibrils Effective in Autoimmune Encephalomyelitis. In: La Flamme, A., Orian, J. (eds) Emerging and Evolving Topics in Multiple Sclerosis Pathogenesis and Treatments. Current Topics in Behavioral Neurosciences, vol 26. Springer, Cham. https://doi.org/10.1007/7854_2015_377

Download citation

Publish with us

Policies and ethics