Skip to main content

Sleep Deprivation and Gene Expression

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Sleep occurs in a wide range of animal species as a vital process for the maintenance of homeostasis, metabolic restoration, physiological regulation, and adaptive cognitive functions in the central nervous system. Long-term perturbations induced by the lack of sleep are mostly mediated by changes at the level of transcription and translation. This chapter reviews studies in humans, rodents, and flies to address the various ways by which sleep deprivation affects gene expression in the nervous system, with a focus on genes related to neuronal plasticity, brain function, and cognition. However, the effects of sleep deprivation on gene expression and the functional consequences of sleep loss are clearly not restricted to the cognitive domain but may include increased inflammation, expression of stress-related genes, general impairment of protein translation, metabolic imbalance, and thermal deregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldabal L, Bahammam AS (2011) Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J 5:31–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A (2013) Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 11(3):231–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E (2010) Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68(1):87–98

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32(4):447–470

    PubMed Central  PubMed  Google Scholar 

  • Aydin A, Selvi Y, Besiroglu L, Boysan M, Atli A, Ozdemir O, Kilic S, Balaharoglu R (2013) Mood and metabolic consequences of sleep deprivation as a potential endophenotype’ in bipolar disorder. J Affect Disord 150(2):284–294

    CAS  PubMed  Google Scholar 

  • Barf RP, Desprez T, Meerlo P, Scheurink AJ (2012) Increased food intake and changes in metabolic hormones in response to chronic sleep restriction alternated with short periods of sleep allowance. Am J Physiol Regul Integr Comp Physiol 302(1):R112–R117

    CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian Integration of Metabolism and Energetics. Science 330(6009):1349–1354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bergmann BM, Everson CA, Kushida CA, Fang VS, Leitch CA, Schoeller DA, Refetoff S, Rechtschaffen A (1989a) Sleep deprivation in the rat: v. Energy use and mediation. Sleep 12(1):31–41

    CAS  PubMed  Google Scholar 

  • Bergmann BM, Kushida CA, Everson CA, Gilliland MA, Obermeyer W, Rechtschaffen A (1989b) Sleep deprivation in the rat: II. Methodology. Sleep 12(1):5–12

    CAS  PubMed  Google Scholar 

  • Bevins RA, Klebaur JE, Bardo MT (1997) Individual differences in response to novelty, amphetamine-induced activity and drug discrimination in rats. Behav Pharmacol 8(2–3):113–123

    CAS  PubMed  Google Scholar 

  • Boyd JG, Gordon T (2003a) Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 183(2):610–619

    CAS  PubMed  Google Scholar 

  • Boyd JG, Gordon T (2003b) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27(3):277–324

    CAS  PubMed  Google Scholar 

  • Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 358(1432):805–814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The Arc of synaptic memory. Exp Brain Res 200(2):125–140

    PubMed Central  PubMed  Google Scholar 

  • Brandt JA, Churchill L, Guan Z, Fang J, Chen L, Krueger JM (2001) Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons. Brain Res 898(1):105–112

    CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a—perspective. J Mol Endocrinol 34(3):597–601

    CAS  PubMed  Google Scholar 

  • Calegare BFA, Fernandes L, Tufik S, D’Almeida V (2010) Biochemical, biometrical and behavioral changes in male offspring of sleep-deprived mice. Psychoneuroendocrinology 35(5):775–784

    CAS  PubMed  Google Scholar 

  • Christy B, Nathans D (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci USA 86(22):8737–8741

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cirelli C (2002) How sleep deprivation affects gene expression in the brain: a review of recent findings. J Appl Physiol 92(1):394–400

    CAS  PubMed  Google Scholar 

  • Cirelli C (2006) Cellular consequences of sleep deprivation in the brain☆. Sleep Med Rev 10(5):307–321

    PubMed  Google Scholar 

  • Cirelli C, Tononi G (2000a) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20(24):9187–9194

    CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G (2000b) Gene expression in the brain across the sleep-waking cycle. Brain Res 885(2):303–321

    CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G (2000c) On the functional significance of c-fos induction during the sleep-waking cycle. Sleep 23(4):453–469

    CAS  PubMed  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1995) Sleep deprivation and c-fos expression in the rat brain. J Sleep Res 4:92–106

    PubMed  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1996) Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 274(5290):1211–1215

    CAS  PubMed  Google Scholar 

  • Cirelli C, LaVaute TM, Tononi G (2005) Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem 94(5):1411–1419

    CAS  PubMed  Google Scholar 

  • Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98(5):1632–1645

    CAS  PubMed  Google Scholar 

  • Clinton SM, Bedrosian TA, Abraham AD, Watson SJ, Akil H (2010) Neural and environmental factors impacting maternal behavior differences in high- versus low-novelty-seeking rats. Horm Behav 57(4–5):463–473

    PubMed Central  PubMed  Google Scholar 

  • Colantuoni C, Purcell AE, Bouton CM, Pevsner J (2000) High throughput analysis of gene expression in the human brain. J Neurosci Res 59(1):1–10

    CAS  PubMed  Google Scholar 

  • Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T (2006) Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12(2):167–189

    PubMed  Google Scholar 

  • Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T (2007) Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12(2):167–189

    CAS  PubMed  Google Scholar 

  • Dellu F, Piazza PV, Mayo W, Le Moal M, Simon H (1996) Novelty-seeking in rats–biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 34(3):136–145

    CAS  PubMed  Google Scholar 

  • Duclot F, Hollis F, Darcy MJ, Kabbaj M (2011) Individual differences in novelty-seeking behavior in rats as a model for psychosocial stress-related mood disorders. Physiol Behav 104(2):296–305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59

    CAS  PubMed  Google Scholar 

  • Everson CA (1995) Functional consequences of sustained sleep deprivation in the rat. Behav Brain Res 69(1–2):43–54

    CAS  PubMed  Google Scholar 

  • Everson CA, Smith CB, Sokoloff L (1994) Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J Neurosci 14(11 Pt 2):6769–6778

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    CAS  PubMed  Google Scholar 

  • Frank MG (2012) Sleep and brain activity. Academic Press, New York

    Google Scholar 

  • Frank E, Sidor MM, Gamble KL, Cirelli C, Sharkey KM, Hoyle N, Tikotzky L, Talbot LS, McCarthy MJ, Hasler BP (2013) Circadian clocks, brain function, and development. Ann N Y Acad Sci 1306:43–67

    CAS  PubMed  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbely AA (1991) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261(1 Pt 2):R198–R208

    CAS  PubMed  Google Scholar 

  • Freeman WM, Robertson DJ, Vrana KE (2000) Fundamentals of DNA hybridization arrays for gene expression analysis. Biotechniques 29(5):1042–1046, 1048–1055

    Google Scholar 

  • Fujihara H, Sei H, Morita Y, Ueta Y, Morita K (2003) Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci 21(3):223–232

    CAS  PubMed  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63(2):378–383

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallagher S, Winston SE, Fuller SA, Hurrell JG (2004) Immunoblotting and immunodetection. Curr Protoc Neurosci (Chapter 5:Unit 5) 19

    Google Scholar 

  • Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263(5153):1618–1623

    CAS  PubMed  Google Scholar 

  • Goldbaum O, Richter-Landsberg C (2001) Stress proteins in oligodendrocytes: differential effects of heat shock and oxidative stress. J Neurochem 78(6):1233–1242

    CAS  PubMed  Google Scholar 

  • Gonnissen HK, Adam TC, Hursel R, Rutters F, Verhoef SP, Westerterp-Plantenga MS (2013) Sleep duration, sleep quality and body weight: parallel developments. Physiol Behav 121:112–116

    CAS  PubMed  Google Scholar 

  • Gorczynski RM, Gorczynski CP, Gorczynski LY, Hu J, Lu J, Manuel J, Lee L (2005) Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis. Acta Astronautica 56(9–12):890–899

    CAS  PubMed  Google Scholar 

  • Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10:168–176

    PubMed Central  PubMed  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4(11):309–314

    CAS  PubMed  Google Scholar 

  • Greenspan RJ, Tononi G, Cirelli C, Shaw PJ (2001) Sleep and the fruit fly. Trends Neurosci 24(3):142–145

    CAS  PubMed  Google Scholar 

  • Guess J, Burch JB, Ogoussan K, Armstead CA, Hongmei Z, Wagner S, Hebert JR, Wood P, Youngstedt SD, Hofseth LJ, Singh UP, Dawen X, Hrushesky WJM (2009) Circadian Disruption, Per3, and Human Cytokine Secretion. Integr Cancer Ther 8(4):329–336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guindalini C, Andersen ML, Alvarenga T, Lee K, Tufik S (2009) To what extent is sleep rebound effective in reversing the effects of paradoxical sleep deprivation on gene expression in the brain? Behav Brain Res 201(1):53–58

    PubMed  Google Scholar 

  • Guzman-Marin R (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575(3):807–819

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman-Marin R, Suntsova N, Stewart DR, Gong H, Szymusiak R, McGinty D (2003) Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol 549(Pt 2):563–571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman-Marin R, Suntsova N, Methippara M, Greiffenstein R, Szymusiak R, McGinty D (2005) Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci 22(8):2111–2116

    PubMed  Google Scholar 

  • Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R, Gomez-Pinilla F, McGinty D (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575(Pt 3):807–819

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20(11):3993–4001

    CAS  PubMed  Google Scholar 

  • Haack M, Sanchez E, Mullington JM (2007) Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep 30(9):1145–1152

    PubMed Central  PubMed  Google Scholar 

  • Hagewoud R, Havekes R, Novati A, Keijser JN, Van der Zee EA, Meerlo P (2010a) Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res 19(2):280–288

    PubMed  Google Scholar 

  • Hagewoud R, Havekes R, Tiba PA, Novati A, Hogenelst K, Weinreder P, Van der Zee EA, Meerlo P (2010b) Coping with sleep deprivation: shifts in regional brain activity and learning strategy. Sleep 33(11):1465–1473

    PubMed Central  PubMed  Google Scholar 

  • Hagewoud R, Whitcomb SN, Heeringa AN, Havekes R, Koolhaas JM, Meerlo P (2010c) A time for learning and a time for sleep: the effect of sleep deprivation on contextual fear conditioning at different times of the day. Sleep 33(10):1315–1322

    PubMed Central  PubMed  Google Scholar 

  • Hairston IS (2004) Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for bdnf in the mediation of delta power. J Neurophysiol 91(4):1586–1595

    CAS  PubMed  Google Scholar 

  • Hamatake M, Miyazaki N, Sudo K, Matsuda M, Sadakata T, Furuya A, Ichisaka S, Hata Y, Nakagawa C, Nagata K, Furuichi T, Katoh-Semba R (2011) Phase advance of the light-dark cycle perturbs diurnal rhythms of brain-derived neurotrophic factor and neurotrophin-3 protein levels, which reduces synaptophysin-positive presynaptic terminals in the cortex of juvenile rats. J Biol Chem 286(24):21478–21487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Havekes R, Vecsey CG, Abel T (2012) The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 24(6):1251–1260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawk J, Abel T (2010) Role of gene transcription in long-term memory storage. In: George FK, Michel Le M, Richard MLM, ThompsonA2, George F. Koob, Richard FT (eds) Encyclopedia of behavioral neuroscience. Academic Press, Oxford, pp 161–179

    Google Scholar 

  • Hawk JD, Abel T (2011) The role of NR4A transcription factors in memory formation. Brain Res Bull 85(1–2):21–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson ND (1970) Behavioral reactions of Wistar rats to conditioned fear stimuli, novelty, and noxious stimulation. J Psychol 75(2d Half):19–34

    Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    CAS  PubMed  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121(6):2133–2141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S (2006) Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 166(16):1756–1762

    CAS  PubMed  Google Scholar 

  • Jin L, Lloyd RV (1997) In situ hybridization: methods and applications. J Clin Lab Anal 11(1):2–9

    CAS  PubMed  Google Scholar 

  • Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis S (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4(3):289–296

    CAS  PubMed  Google Scholar 

  • Jones S, Pfister-Genskow M, Benca RM, Cirelli C (2007) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105(1):46–62

    Google Scholar 

  • Jones S, Pfister-Genskow M, Benca RM, Cirelli C (2008) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105(1):46–62

    CAS  PubMed  Google Scholar 

  • Jouvet M (1967) The states of sleep. Sci Am 216(2):62–68

    CAS  PubMed  Google Scholar 

  • Jouvet M (1994) Paradoxical sleep mechanisms. Sleep 17(8 Suppl.):S77–S83

    CAS  PubMed  Google Scholar 

  • Jouvet D, Vimont P, Delorme F (1964a) Study of selective deprivation of the paradoxal phase of sleep in the cat. J Physiol (Paris) 56:381

    CAS  Google Scholar 

  • Jouvet D, Vimont P, Delorme F, Jouvet M (1964b) Study of selective deprivation of the paradoxal sleep phase in the cat. C R Seances Soc Biol Fil 158:756–759

    CAS  PubMed  Google Scholar 

  • Kabbaj M, Akil H (2001) Individual differences in novelty-seeking behavior in rats: a c-fos study. Neuroscience 106(3):535–545

    CAS  PubMed  Google Scholar 

  • Kavčič P, Rojc B, Dolenc-Grošelj L, Claustrat B, Fujs K, Poljak M (2011) The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croatian Med J 52(5):594–603

    Google Scholar 

  • Kayser MS, Yue Z, Sehgal A (2014) A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 344(6181):269–274

    CAS  PubMed  Google Scholar 

  • Khosro S, Alireza S, Omid A, Forough S (2011) Night work and inflammatory markers. Indian J Occup Environ Med 15(1):38–41

    PubMed Central  PubMed  Google Scholar 

  • Killick R, Banks S, Liu PY (2012) Implications of sleep restriction and recovery on metabolic outcomes. J Clin Endocrinol Metab 97(11):3876–3890

    CAS  PubMed  Google Scholar 

  • Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74(4):183–211

    CAS  PubMed  Google Scholar 

  • Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11(3):163–178

    PubMed Central  PubMed  Google Scholar 

  • Koban M, Swinson KL (2005) Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab 289(1):E68–E74

    CAS  PubMed  Google Scholar 

  • Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33(4):287–297

    CAS  PubMed  Google Scholar 

  • Kumar T, Jha SK (2012) Sleep deprivation impairs consolidation of cued fear memory in rats. PLoS One 7(10):e47042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12(1):22–30

    CAS  PubMed  Google Scholar 

  • Kushikata T, Kubota T, Fang J, Krueger JM (2003) Neurotrophins 3 and 4 enhance non-rapid eye movement sleep in rabbits. Neurosci Lett 346(3):161–164

    CAS  PubMed  Google Scholar 

  • Landis CA, Collins BJ, Cribbs LL, Sukhatme VP, Bergmann BM, Rechtschaffen A, Smalheiser NR (1993) Expression of Egr-1 in the brain of sleep deprived rats. Brain Res Mol Brain Res 17(3–4):300–306

    CAS  PubMed  Google Scholar 

  • Ledoux L, Sastre JP, Buda C, Luppi PH, Jouvet M (1996) Alterations in c-fos expression after different experimental procedures of sleep deprivation in the cat. Brain Res 735(1):108–118

    CAS  PubMed  Google Scholar 

  • Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143

    CAS  PubMed  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 145(2):433–434

    Google Scholar 

  • Maas S (2010) Gene regulation through RNA editing. Discov Med 10(54):379–386

    PubMed  Google Scholar 

  • Mackiewicz M, Sollars PJ, Ogilvie MD, Pack AI (1996) Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport 7(2):529–533

    CAS  PubMed  Google Scholar 

  • Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE, Naidoo N, Baldwin DA, Jensen ST, Churchill GA, Pack AI (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31(3):441–457

    CAS  PubMed  Google Scholar 

  • Mackiewicz M, Naidoo N, Zimmerman JE, Pack AI (2008) Molecular Mechanisms of Sleep and Wakefulness. Ann N Y Acad Sci 1129(1):335–349

    PubMed  Google Scholar 

  • Maizelis MR (1959) On the role of nutritional stereotype, muscle activity and sleep in the regulation of physiological functions. Zh Vyssh Nerv Deiat Im I P Pavlova 9:845–850

    CAS  PubMed  Google Scholar 

  • Maloney KJ, Mainville L, Jones BE (2002) c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15(4):774–778

    PubMed  Google Scholar 

  • Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O’Hara BF, Franken P, Tafti M (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104(50):20090–20095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright Jr KP (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci USA 110(14):5695–5700

    Google Scholar 

  • Maxwell MA, Muscat GE (2006) The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal 4:e002

    PubMed Central  PubMed  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4):465–474

    CAS  PubMed  Google Scholar 

  • McManus CJ, Graveley BR (2011) RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 21(4):373–379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mendelson WB, Guthrie RD, Frederick G, Wyatt RJ (1974) The flower pot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 2(4):553–556

    CAS  PubMed  Google Scholar 

  • Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N, von Schantz M, Smith CP, Dijk DJ (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci USA 110(12):E1132–E1141

    Google Scholar 

  • Morita K, Kuwada A, Fujihara H, Morita Y, Sei H (2003) Changes in the expression of steroid metabolism-related genes in rat adrenal glands during selective REM sleep deprivation. Life Sci 72(17):1973–1982

    CAS  PubMed  Google Scholar 

  • Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK (2009) Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis 51(4):294–302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naidoo N, Giang W, Galante RJ, Pack AI (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92(5):1150–1157

    CAS  PubMed  Google Scholar 

  • National Research Council Staff (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. The National Academies Press, Washington

    Google Scholar 

  • Nelson SE, Duricka DL, Campbell K, Churchill L, Krueger JM (2004) Homer1a and 1bc levels in the rat somatosensory cortex vary with the time of day and sleep loss. Neurosci Lett 367(1):105–108

    CAS  PubMed  Google Scholar 

  • Nitabach MN, Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, clock, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 6(10):e26622

    Google Scholar 

  • Ocampo-Garces A, Molina E, Rodriguez A, Vivaldi EA (2000) Homeostasis of REM sleep after total and selective sleep deprivation in the rat. J Neurophysiol 84(5):2699–2702

    CAS  PubMed  Google Scholar 

  • O’Hara BF, Young KA, Watson FL, Heller HC, Kilduff TS (1993) Immediate early gene expression in brain during sleep deprivation: preliminary observations. Sleep 16(1):1–7

    PubMed  Google Scholar 

  • Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume R, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIbeta. Cell 149(4):886–898

    CAS  PubMed  Google Scholar 

  • Palma JA, Urrestarazu E, Iriarte J (2013) Sleep loss as risk factor for neurologic disorders: a review. Sleep Med 14(3):229–236

    PubMed  Google Scholar 

  • Pandey AK, Kar SK (2011) REM sleep deprivation of rats induces acute phase response in liver. Biochem Biophys Res Commun 410(2):242–246

    CAS  PubMed  Google Scholar 

  • Parmeggiani PL (1982) Regulation of physiological functions during sleep in mammals. Experientia 38(12):1405–1408

    CAS  PubMed  Google Scholar 

  • Pearlman CA (1969) Effect of rapid eye movement (dreaming) sleep deprivation on retention of avoidance learning in rats. Rep US Naval Submarine Med Cent 22(1):1–4

    Google Scholar 

  • Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S (2012) Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44(21):1003–1012

    CAS  PubMed  Google Scholar 

  • Petit JM, Tobler I, Allaman I, Borbely AA, Magistretti PJ (2002) Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci 16(6):1163–1167

    PubMed  Google Scholar 

  • Pisula W, Siegel J (2005) Exploratory behavior as a function of environmental novelty and complexity in male and female rats. Psychol Rep 97(2):631–638

    PubMed  Google Scholar 

  • Pompeiano M, Cirelli C, Tononi G (1992) Effects of sleep deprivation on fos-like immunoreactivity in the rat brain. Arch Ital Biol 130(4):325–335

    CAS  PubMed  Google Scholar 

  • Pompeiano M, Cirelli C, Tononi G (1994) Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGIF-A mRNA and protein. J Sleep Res 3:80–96

    PubMed  Google Scholar 

  • Pompeiano M, Cirelli C, Ronca-Testoni S, Tononi G (1997) NGFI-A expression in the rat brain after sleep deprivation. Brain Res Mol Brain Res 46(1–2):143–153

    CAS  PubMed  Google Scholar 

  • Postler E, Lehr A, Schluesener H, Meyermann R (1997) Expression of the S-100 proteins MRP-8 and -14 in ischemic brain lesions. Glia 19(1):27–34

    CAS  PubMed  Google Scholar 

  • Ramon F, Mendoza-Angeles K, Hernandez-Falcon J (2012) Sleep in invertebrates: crayfish. Front Biosci (Schol Ed) 4:1190–1200

    Google Scholar 

  • Rechtschaffen A, Bergmann BM (1995) Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res 69(1–2):55–63

    CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221(4606):182–184

    CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Bergmann BM, Gilliland MA, Bauer K (1999) Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22(1):11–31

    CAS  PubMed  Google Scholar 

  • Ribeiro S, Goyal V, Mello CV, Pavlides C (1999) Brain gene expression during REM sleep depends on prior waking experience. Learn Mem 6(5):500–508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C (2002) Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye- movement sleep. J Neurosci 22(24):10914–10923

    CAS  PubMed  Google Scholar 

  • Ribeiro S, Shi X, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NAM, Nicolelis MAL (2007) Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci 1(1):43–55

    PubMed Central  PubMed  Google Scholar 

  • Roman V, Walstra I, Luiten PG, Meerlo P (2005) Too little sleep gradually desensitizes the serotonin 1A receptor system. Sleep 28(12):1505–1510

    PubMed  Google Scholar 

  • Sei H, Saitoh D, Yamamoto K, Morita K, Morita Y (2000) Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res 877(2):387–390

    CAS  PubMed  Google Scholar 

  • Seugnet L, Suzuki Y, Donlea JM, Gottschalk L, Shaw PJ (2011) Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep 34(2):137–146

    PubMed Central  PubMed  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837

    CAS  PubMed  Google Scholar 

  • Shiao YH (2003) A new reverse transcription-polymerase chain reaction method for accurate quantification. BMC Biotechnol 3:22

    PubMed Central  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8(2):206

    PubMed Central  PubMed  Google Scholar 

  • Smith C, Kelly G (1988) Paradoxical sleep deprivation applied two days after end of training retards learning. Physiol Behav 43(2):213–216

    CAS  PubMed  Google Scholar 

  • Sossin WS, Barker PA (2007) Something old, something new: BDNF-induced neuron survival requires TRPC channel function. Nat Neurosci 10(5):537–538

    CAS  PubMed  Google Scholar 

  • Staba RJ, Wilson CL, Fried I, Engel J Jr (2002) Single neuron burst firing in the human hippocampus during sleep. Hippocampus 12(6):724–734

    PubMed  Google Scholar 

  • Suchecki D, Tiba PA, Tufik S (2002) Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. J Neuroendocrinol 14(7):549–554

    CAS  PubMed  Google Scholar 

  • Suzuki K, Miyamoto M, Miyamoto T, Sakuta H, Hirata K (2012) The impact of sleep disturbances on neuroendocrine and autonomic functions. Nihon Rinsho 70(7):1169–1176

    PubMed  Google Scholar 

  • Taishi P, Sanchez C, Wang Y, Fang J, Harding JW, Krueger JM (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol 281(3):R839–R845

    CAS  PubMed  Google Scholar 

  • Terao A, Greco MA, Davis RW, Heller HC, Kilduff TS (2003) Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 120(4):1115–1124

    CAS  PubMed  Google Scholar 

  • Terao A, Wisor JP, Peyron C, Apte-Deshpande A, Wurts SW, Edgar DM, Kilduff TS (2006) Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip® study. Neuroscience 137(2):593–605

    CAS  PubMed  Google Scholar 

  • Thompson CL (2010) Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 4

    Google Scholar 

  • Thor DH, Harrison RJ, Schneider SR, Carr WJ (1988) Sex differences in investigatory and grooming behaviors of laboratory rats (Rattus norvegicus) following exposure to novelty. J Comp Psychol 102(2):188–192

    CAS  PubMed  Google Scholar 

  • Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU (2003) Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278(2):718–723

    CAS  PubMed  Google Scholar 

  • Tischmeyer W, Grimm R (1999) Activation of immediate early genes and memory formation. Cell Mol Life Sci 55(4):564–574

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2001) Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacology 25(5 Suppl):S28–S35

    CAS  PubMed  Google Scholar 

  • Tononi G, Pompeiano M, Cirelli C (1994) The locus coeruleus and immediate-early genes in spontaneous and forced wakefulness. Brain Res Bull 35(5–6):589–596

    CAS  PubMed  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21(4):717–726

    CAS  PubMed  Google Scholar 

  • Tufik S, Andersen ML, Bittencourt LR, Mello MT (2009) Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research. An Acad Bras Cienc 81(3):521–538

    PubMed  Google Scholar 

  • Ulloor J, Datta S (2005) Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J. Neurochem. 95(2):418–428

    CAS  PubMed  Google Scholar 

  • van der Borght K, Ferrari F, Klauke K, Roman V, Havekes R, Sgoifo A, van der Zee EA, Meerlo P (2006) Hippocampal cell proliferation across the day: increase by running wheel activity, but no effect of sleep and wakefulness. Behav Brain Res 167(1):36–41

    PubMed  Google Scholar 

  • van Leeuwen WM, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, Harma M, Porkka-Heiskanen T, Alenius H (2009) Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 4(2):e4589

    PubMed Central  PubMed  Google Scholar 

  • van Swinderen B (2007) 1.28—Sleep in invertebrates. Evolution of nervous systems. HK Editor-in-Chief:   Jon. Academic Press, Oxford, p 451–456

    Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461(7267):1122–1125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vecsey CG, Peixoto L, Choi JH, Wimmer M, Jaganath D, Hernandez PJ, Blackwell J, Meda K, Park AJ, Hannenhalli S, Abel T (2012) Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44(20):981–991

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrodhins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons In Vitro. Eur J Neurosci 7(2):213–222

    CAS  PubMed  Google Scholar 

  • Ventskovska O, Porkka-Heiskanen T, Karpova NN (2014) Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats. J Sleep Res

    Google Scholar 

  • Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, Chrousos GP (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89(5):2119–2126

    CAS  PubMed  Google Scholar 

  • Vivaldi EA, Bassi A, Estrada J, Garrido I, Diaz J, Ocampo-Garces A (2008) On-line analysis of biosignals for the automation of total and specific sleep deprivation in the rat. Biol Res 41(4):439–452

    PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wallingford JK, Deurveilher S, Currie RW, Fawcett JP, Semba K (2014) Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation. Neuroscience 277:174–183

    CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Briesemann M, Yan J (2010) Computational analysis of gene regulation in animal sleep deprivation. Physiol Genomics 42(3):427–436

    CAS  PubMed  Google Scholar 

  • Weil ZM, Norman GJ, Karelina K, Morris JS, Barker JM, Su AJ, Walton JC, Bohinc S, Nelson RJ, DeVries AC (2009) Sleep deprivation attenuates inflammatory responses and ischemic cell death. Exp Neurol 218(1):129–136

    PubMed Central  PubMed  Google Scholar 

  • Wu RS, Huang CC, Pan CH, Wu KC, Chen CC, Liu SK, Tang CL, Wu CH (2011) Total sleep deprivation augments balloon angioplasty-induced neointimal hyperplasia in rats. Exp Physiol 96(11):1239–1247

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    CAS  PubMed  Google Scholar 

  • Xu A, Sakurai E, Kuramasu A, Zhang J, Li J, Okamura N, Zhang D, Yoshikawa T, Watanabe T, Yanai K (2010) Roles of hypothalamic subgroup histamine and orexin neurons on behavioral responses to sleep deprivation induced by the treadmill method in adolescent rats. J Pharmacol Sci 114(4):444–453

    CAS  PubMed  Google Scholar 

  • Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB (1997) Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol Behav 61(2):249–256

    CAS  PubMed  Google Scholar 

  • Ziegler DR, Herman JP (2002) Neurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integr Comp Biol 42(3):541–551

    PubMed  Google Scholar 

  • Zielinski MR, Kim Y, Karpova SA, McCarley RW, Strecker RE, Gerashchenko D (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27–31

    CAS  PubMed  Google Scholar 

  • Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N, Mackiewicz M, Churchill GA, Pack AI (2006) Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27(3):337–350

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support obtained from the Pew Latin American Fellows Program in the Biomedical Sciences, Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq Universal Grant 481351/2011-6, FAPESP Neuromat (2013/ 07699-0), and a graduate fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to A.C.S. We thank D. Koshiyama for library support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidarta Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Costa Souza, A., Ribeiro, S. (2015). Sleep Deprivation and Gene Expression. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_360

Download citation

Publish with us

Policies and ethics