Skip to main content

A Bird’s Eye View of Sleep-Dependent Memory Consolidation

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

How new experiences are solidified into long-lasting memories is a central question in the study of brain and behavior. One of the most intriguing discoveries in memory research is that brain activity during sleep helps to transform newly learned information and skills into robust memories. Though the first experimental work linking sleep and memory was conducted 90 years ago by Jenkins and Dallenbach, the case for sleep-dependent memory consolidation has only garnered strong support in the last decade. Recent studies in humans provide extensive behavioral, imaging, and polysomnographic data supporting sleep consolidation of a broad range of memory tasks. Likewise, studies in a few animal model systems have elucidated potential mechanisms contributing to sleep consolidation such as neural reactivation and synaptic homeostasis. Here, we present an overview of sleep-dependent memory consolidation, focusing on how investigations of sleep and learning in birds have complemented the progress made in mammalian systems by emphasizing a strong connection between behavior and physiology. We begin by describing the behavioral approach that has been utilized to demonstrate sleep consolidation in humans. We then address neural reactivation in the rodent hippocampal system as a putative mechanism of sleep consolidation. Next, we discuss the role of sleep in the learning and maintenance of song in zebra finches. We note that while both the rodent and zebra finch systems provide evidence for sleep-dependent memory changes in physiology and behavior, neither duplicates the pattern of changes most commonly observed in humans. Finally, we present a recently developed model of sleep consolidation involving auditory classification learning in European starlings , which has the potential to connect behavioral evidence of sleep consolidation as developed in humans with underlying neural mechanisms observable in animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aamodt SM, Nordeen EJ, Nordeen KW (1996) Blockade of NMDA receptors during song model exposure impairs song development in juvenile zebra finches. Neurobiol Learn Mem 65:91–98

    CAS  PubMed  Google Scholar 

  • Abel M, Bäuml KH (2013) Sleep can reduce proactive interference. Memory:1–8

    Google Scholar 

  • Adret P (2004) In search of the song template. Ann N Y Acad Sci 1016:303–324

    PubMed  Google Scholar 

  • Adret P, Meliza CD, Margoliash D (2012) Song tutoring in presinging zebra finch juveniles biases a small population of higher-order song-selective neurons toward the tutor song. J Neurophysiol 108:1977–1987

    PubMed Central  PubMed  Google Scholar 

  • Adret-Hausberger M, Jenkins P (1988) Complex organization of the warbling song in the European starling Sturnus vulgaris. Behaviour 107:138–156

    Google Scholar 

  • Alger SE, Lau H, Fishbein W (2012) Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem 98:188–196

    PubMed  Google Scholar 

  • Alvarez-Buylla A, Theelen M, Nottebohm F (1988) Birth of projection neurons in the higher vocal center of the canary forebrain before, during, and after song learning. Proc Nat Acad Sci USA 85:8722–8726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amlaner CJ, Ball NJ (1994) Avian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 2nd edn. W.B. Saunders, Philadelphia, pp 81–94

    Google Scholar 

  • Andalman AS, Fee MS (2009) A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc Nat Acad Sci USA 106:12518–12523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Antony JW, Gobel EW, O’Hare JK et al (2012) Cued memory reactivation during sleep influences skill learning. Nature 15:1114–1116

    CAS  Google Scholar 

  • Aronov D, Andalman AS, Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320:630–634

    CAS  PubMed  Google Scholar 

  • Ayala-Guerrero F, Perez MC, Calderon A (1988) Sleep patterns in the bird Aratinga canicularis. Physiol Behav 43:585–589

    CAS  PubMed  Google Scholar 

  • Ayala-Guerrero F (1989) Sleep patterns in the parakeet Melopsittacus undulatus. Physiol Behav 46:787–791

    CAS  PubMed  Google Scholar 

  • Ball GF, Balthazart J (2010) Introduction to the chemical neuroanatomy of birdsong. J Chem Neuroanat 39:67–71

    PubMed  Google Scholar 

  • Belgard TG, Montiel JF (2013) Things change: how comparative transcriptomics suggest the pallium has evolved at multiple levels of organization. Brain Behav Evol 82:150–152

    PubMed  Google Scholar 

  • Belgard TG, Montiel JF, Wang WZ, Garcia-Moreno F, Margulies EH, Ponting CP, Molnar Z (2013) Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. Proc Nat Acad Sci USA 110:13150–13155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bendor D, Wilson M (2012) Biasing the content of hippocampal replay during sleep. Nat Neurosci 15:1439–1444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Binder S, Baier PC, Molle M, Inostroza M, Born J, Marshall L (2012) Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiol Learn Mem 97:213–219

    PubMed  Google Scholar 

  • Brainard MS, Doupe AJ (2000) Auditory feedback in learning and maintenance of vocal behaviour. Nat Rev Neurosci 1:31–40

    CAS  PubMed  Google Scholar 

  • Brawn TP, Fenn KM, Nusbaum HC, Margoliash D (2008) Consolidation of sensorimotor learning during sleep. Learning and Memory 15:815–819

    PubMed  Google Scholar 

  • Brawn TP, Nusbaum HC, Margoliash D (2010a) Sleep-dependent consolidation of auditory discrimination learning in adult starlings. J Neurosci 30:609–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brawn TP, Fenn KM, Nusbaum HC, Margoliash D (2010b) Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci 30:13977–13982

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brawn TP, Nusbaum HC, Margoliash D (2013) Sleep consolidation of interfering auditory memories in starlings. Psychol Sci 24:439–447

    PubMed  Google Scholar 

  • Cai DJ, Shuman T, Gorman MR, Sage JR, Anagnostaras SG (2009) Sleep selectively enhances hippocampus-dependent memory in mice. Behav Neurosci 123:713–719

    PubMed  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    CAS  PubMed  Google Scholar 

  • Carrillo GD, Doupe AJ (2004) Is the songbird Area X striatal, pallidal, or both? An anatomical study. J Comp Neurol 473:415–437

    PubMed  Google Scholar 

  • Cirelli C, Tononi G (2008) Is sleep essential. PLoS Biology 6(8):e216

    PubMed Central  PubMed  Google Scholar 

  • Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290:812–816

    CAS  PubMed  Google Scholar 

  • Derégnaucourt S, Mitra PP, Fehér O et al (2005) How sleep affects the developmental learning of bird song. Nature 433:710–716

    PubMed  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nature Reviews Neuroscience: 1–13

    Google Scholar 

  • Diekelmann S, Büchel C, Born J, Rasch B (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nature:1–8

    Google Scholar 

  • Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469:397–401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dragoi G, Tonegawa S (2013) Distinct preplay of multiple novel spatial experiences in the rat. Proc Nat Acad Sci USA 110:9100–9105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drosopoulos S, Schulze C, Fischer S, Born J (2007) Sleep’s function in the spontaneous recovery and consolidation of memories. J Exp Psychol Gen 136:169–183

    PubMed  Google Scholar 

  • Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Nat Acad Sci USA 109:16974–16979

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durand SE, Tepper JM, Cheng MF (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323(4):495–518

    CAS  PubMed  Google Scholar 

  • Eens M (1997) Understanding the complex song of the European starling: an integrated ethological approach. Adv Study Behav 26:355–434

    Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10

    PubMed Central  PubMed  Google Scholar 

  • Ellenbogen JM, Hu PT, Payne JD et al (2007) Human relational memory requires time and sleep. Proc Nat Acad Sci USA 104:7723–7728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellenbogen JM, Hulbert JC, Jiang Y, Stickgold R (2009) The sleeping brain’s influence on verbal memory: boosting resistance to interference. PLoS ONE 4:e4117

    PubMed Central  PubMed  Google Scholar 

  • Ellenbogen JM, Hulbert JC, Stickgold R et al (2006) Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr Biol 16:1290–1294

    CAS  PubMed  Google Scholar 

  • Eschenko O, Molle M, Born J, Sara SJ (2006) Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26:12914–12920

    CAS  PubMed  Google Scholar 

  • Eschenko O, Ramadan W, Molle M et al (2008) Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15:222–228

    PubMed Central  PubMed  Google Scholar 

  • Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318:1147–1150

    CAS  PubMed  Google Scholar 

  • Farries MA, Ding L, Perkel DJ (2005) Evidence for direct and indirect pathways through the song system basal ganglia. J Comp Neurol 484:93–104

    PubMed  Google Scholar 

  • Farries MA, Perkel DJ (2002) A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22:3776–3787

    CAS  PubMed  Google Scholar 

  • Fenn KM, Margoliash D, Nusbaum HC (2013) Sleep restores loss of generalized but not rote learning of synthetic speech. Cognition 128:280–286

    PubMed  Google Scholar 

  • Fenn KM, Nusbaum HC, Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425:614–616

    CAS  PubMed  Google Scholar 

  • Ferrara M, Iaria G, Tempesta D et al (2008) Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans. Hippocampus 18:844–851

    PubMed  Google Scholar 

  • Finger TE, Yamamoto N, Karten HJ, Hof PR (2013) Evolution of the forebrain—revisiting the pallium. J Comp Neurol 521:3601–3603

    PubMed  Google Scholar 

  • Fischer S, Nitschke MF, Melchert UH et al (2005) Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci 25:11248–11255

    CAS  PubMed  Google Scholar 

  • Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404

    CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    CAS  PubMed  Google Scholar 

  • Gais S, Lucas B, Born J (2006) Sleep after learning aids memory recall. Learning and Memory 13:259–262

    PubMed  Google Scholar 

  • Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3:1335–1339

    CAS  PubMed  Google Scholar 

  • Gentner TQ, Hulse SH (2000) Perceptual classification based on the component structure of song in European starlings. J Acoust Soc Am 107:3369–3381

    CAS  PubMed  Google Scholar 

  • Gentner TQ, Hulse SH, Ball GF (2004) Functional differences in forebrain auditory regions during learned vocal recognition in songbirds. J Comp Physiol A 190:1001–1010

    Google Scholar 

  • Gentner TQ, Hulse SH, Bentley GE, Ball GF (2000) Individual vocal recognition and the effect of partial lesions to HVc on discrimination, learning, and categorization of conspecific song in adult songbirds. J Neurobiol 42:117–133

    CAS  PubMed  Google Scholar 

  • Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI et al (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nature 12:1222–1223

    CAS  Google Scholar 

  • Gobes SMH, Zandbergen MA, Bolhuis JJ (2010) Memory in the making: Localized brain activation related to song learning in young songbirds. Proc R Soc B 277:3343–3351

    PubMed Central  PubMed  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Nat Acad Sci USA 80:2390–2394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez RL, Bootzin RR, Nadel L (2006) Naps promote abstraction in language-learning infants. Psychol Sci 17:670–674

    PubMed  Google Scholar 

  • Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contexual fear conditioning. Learn Mem 10:168–176

    PubMed Central  PubMed  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    CAS  PubMed  Google Scholar 

  • Hagewoud R, Whitcomb SN, Heeringa AN, Havekes R, Koolhaas JM, Meerlo P (2010) A time for learning and a time for sleep: the effect of sleep deprivation on contextual fear conditioning at different times of the day. Sleep 330:1315–1322

    Google Scholar 

  • Horn G, Nicol AU, Brown MW (2001) Tracking memory’s trace. Proc Nat Acad Sci USA 98:5282–5287

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hotermans C, Peigneux P, Maertens de Noordhout A et al (2006) Early boost and slow consolidation in motor skill learning. Learn Mem 13:580–583

    PubMed  Google Scholar 

  • Hu P, Stylos-Allan M, Walker MP (2006) Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17:891–898

    PubMed  Google Scholar 

  • Hupbach A, Gomez RL, Bootzin RR, Nadel L (2009) Nap-dependent learning in infants. Develop Sci 12:1007–1012

    Google Scholar 

  • Inostroza M, Binder S, Born J (2013) Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 237:15–22

    PubMed  Google Scholar 

  • Jackson C, McCabe BJ, Nicol AU, Grout AS, Brown MW, Horn G (2008) Dynamics of a memory trace: effects of sleep on consolidation. Curr Biol 18:393–400

    CAS  PubMed  Google Scholar 

  • Jarvis ED, Güntürkün O, Bruce L et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    CAS  PubMed  Google Scholar 

  • Jeanne JM, Thompson JV, Sharpee TO, Gentner TQ (2011) Emergence of learned categorical representations within an auditory forebrain circuit. J Neurosci 31:2595–2606

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107

    CAS  PubMed  Google Scholar 

  • Jones SG, Vyazovskiy VV, Cirelli C et al (2008) Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii). BMC Neuroscience 9:47

    PubMed Central  PubMed  Google Scholar 

  • Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433:638–643

    CAS  PubMed  Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columbia livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis. Brain Res 6:409–427

    CAS  PubMed  Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columbia livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153

    CAS  PubMed  Google Scholar 

  • Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Nat Acad Sci USA 94:2800–2804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kempler L, Richmond JL (2012) Effect of sleep on gross motor memory. Memory:1–8

    Google Scholar 

  • Korman M, Doyon J, Doljansky J et al (2007) Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci 10:1206–1213

    CAS  PubMed  Google Scholar 

  • Korman M, Raz N, Flash T, Karni A (2003) Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proc Nat Acad Sci USA 100:12492–12497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA, McNaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101

    CAS  PubMed  Google Scholar 

  • Kuriyama K, Stickgold R, Walker MP (2004) Sleep-dependent learning and motor-skill complexity. Learn Mem 11:705–713

    PubMed Central  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    CAS  PubMed  Google Scholar 

  • Lesku JA, Roth TC 2nd, Rattenborg NC, Amlaner CJ, Lima SL (2009) History and future of comparative analyses in sleep research. Neurosci Biobehav Rev 33:1024–1036

    PubMed  Google Scholar 

  • Lipkind D, Tchernichovski O (2011) Quantification of developmental birdsong learning from the subsyllabic scale to cultural evolution. Proc Nat Acad Sci USA 108:15572–15579

    PubMed Central  CAS  PubMed  Google Scholar 

  • London SE, Clayton DF (2008) Functional identification of sensory mechanisms required for developmental song learning. Nat Neurosci 11:579–586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Low PS, Shank SS, Sejnowski TJ, Margoliash D (2008) Mammalian-like features of sleep structure in zebra finches. Proc Nat Acad Sci USA 105:9081–9086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marler P (1997) Three models of song learning: evidence from behavior. J Neurobiol 33:501–516

    CAS  PubMed  Google Scholar 

  • Margoliash D (2002) Evaluating theories of bird song learning: implications for future directions. J Comp Physiol A 188:851–866

    CAS  Google Scholar 

  • Marshall L, Born J (2007) The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci 11:442–450

    PubMed  Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    CAS  PubMed  Google Scholar 

  • Martinez-Gonzalez D, Lesku JA, Rattenborg NC (2008) Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis. J Sleep Res 17:140–153

    PubMed  Google Scholar 

  • Mednick SC, Nakayama K, Cantero JL et al (2002) The restorative effect of naps on perceptual deterioration. Nat Neurosci 5:677–681

    CAS  PubMed  Google Scholar 

  • Mednick S, Nakayama K, Stickgold R (2003) Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 6:697–698

    CAS  PubMed  Google Scholar 

  • Mednick SC, Arman AC, Boynton GM (2005) The time course and specificity of perceptual deterioration. Proc Nat Acad Sci USA 102:3881–3885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meliza CD, Chi Z, Margoliash D (2010) Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework. J Neurophysiol 103:1195–1208

    PubMed Central  PubMed  Google Scholar 

  • Meliza CD, Margoliash D (2012) Emergence of selectivity and tolerance in the avian auditory cortex. J Neurosci 32:15158–15168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montiel JF, Molnar Z (2013) The impact of gene expression analysis on evolving views of avian brain organization. J Comp Neurol 521:3604–3613

    CAS  PubMed  Google Scholar 

  • Müller CM, Leppelsack HJ (1985) Feature extraction and tonotopic organization in the avian auditory forebrain. Exp Brain Res 59:587–599

    PubMed  Google Scholar 

  • Ngo H-VV, Martinetz T, Born J, Mölle M (2013) Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78:545–553

    CAS  PubMed  Google Scholar 

  • Nishida M, Walker MP (2007) Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS ONE 2:e341

    PubMed Central  PubMed  Google Scholar 

  • Nordeen KW, Nordeen EJ (1992) Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav Neural Biol 57:58–66

    CAS  PubMed  Google Scholar 

  • Ölveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3:e153

    PubMed Central  PubMed  Google Scholar 

  • O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33:220–229

    PubMed  Google Scholar 

  • Paton JA, Nottebohm F (1984) Neurons born in adult brain are recruited into functional circuits. Science 225:1046–1048

    CAS  PubMed  Google Scholar 

  • Paus M, Kiefmann M, Churakov G et al (2011) ncomms1448. Nat Commun 2:443–447. doi:10.1038/ncomms1448

    PubMed Central  PubMed  Google Scholar 

  • Payne JD (2011) Learning, memory, and sleep in humans. Clin Sleep Med 6:15–30

    Google Scholar 

  • Payne JD, Stickgold R, Swanberg K, Kensinger EA (2008) Sleep preferentially enhances memory for emotional components of scenes. Psychol Sci 19:781–788

    PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K et al (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature 12:919–926

    CAS  Google Scholar 

  • Ramadan W, Eschenko O, Sara SJ (2009) Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS ONE 4:e6697

    PubMed Central  PubMed  Google Scholar 

  • Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93:681–766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasch B, Born J (2007) Maintaining memories by reactivation. Curr Opin Neurobiol 17:698–703

    CAS  PubMed  Google Scholar 

  • Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817–842

    CAS  PubMed  Google Scholar 

  • Rattenborg NC, Amlaner CJ (2010) A bird’s-eye view of the function of sleep. In: McNamara P, Barton RA, Nunn CL (eds) Evolution of Sleep. Cambridge University Press, Cambridge, pp 145–171

    Google Scholar 

  • Rattenborg NC, Martinez-Gonzalez D, Lesku JA (2009) Avian sleep homeostasis: Convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav Rev 33:253–270

    PubMed  Google Scholar 

  • Rattenborg NC, Martinez-Gonzalez D, Roth TC II, Pravosudov VV (2011) Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev Camb Philos Soc 86:658–691

    PubMed Central  PubMed  Google Scholar 

  • Rauske PL, Chi Z, Dave AS, Margoliash D (2010) Neuronal stability and drift across periods of sleep: Premotor activity patterns in a vocal control nucleus of adult zebra finches. J Neurosci 30:2783–2794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL et al (2004a) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    PubMed Central  PubMed  Google Scholar 

  • Reiner A, Perkel DJ, Mello CV, Jarvis ED (2004b) Songbirds and the revised avian brain nomenclature. Ann NY Acad Sci 1016:77–108

    PubMed Central  PubMed  Google Scholar 

  • Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A 287:1080–1102

    Google Scholar 

  • Rickard TC, Cai DJ, Rieth CA et al (2008) Sleep does not enhance motor sequence learning. J Exp Psychol Learn Mem Cogn 34:834–842

    PubMed  Google Scholar 

  • Rieth CA, Cai DJ, McDevitt EA, Mednick SC (2010) The role of sleep and practice in implicit and explicit motor learning. Behav Brain Res 214:470–474

    PubMed Central  PubMed  Google Scholar 

  • Robertson EM, Pascual-Leone A, Press DZ (2004) Awareness Modifies the Skill-Learning Benefits of Sleep. Curr Biol 14:208–212

    CAS  PubMed  Google Scholar 

  • Rudoy JD, Voss JL, Westerberg CE, Paller KA (2009) Strengthening individual memories by reactivating them during sleep. Science 326:1079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11:2896–2913

    CAS  PubMed  Google Scholar 

  • Schmidt DF, Ball NJ, Amlaner CJ (1990) The characteristics and quantities of sleep in the Aebra finch (genus Taenopygia). Sleep Res 14:103

    Google Scholar 

  • Scullin MK, McDaniel MA (2010) Remembering to execute a goal: sleep on it! Psychol Sci 21:1028–1035

    PubMed  Google Scholar 

  • Sen K, Theunissen FE, Doupe AJ (2001) Feature analysis of natural sounds in the songbird auditory forebrain. J Neurophysiol 86:1445–1458

    CAS  PubMed  Google Scholar 

  • Shank SS, Margoliash D (2009) Sleep and sensorimotor integration during early vocal learning in a songbird. Nature 457:73–77

    Google Scholar 

  • Sheth BR, Varghese R, Truong T (2012) Sleep shelters verbal memory from different kinds of interference. Sleep 35:985–996

    PubMed Central  PubMed  Google Scholar 

  • Siegel JM (2008) Do all animals sleep? Trends Neurosci 31:208–213

    CAS  PubMed  Google Scholar 

  • Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol 53:51–63

    CAS  PubMed  Google Scholar 

  • Solis MM, Doupe AJ (1999) Contributions of tutor and bird’s own song experience to neural selectivity in the songbird anterior forebrain. J Neurosci 19:4559–4584

    CAS  PubMed  Google Scholar 

  • Stickgold R, James L, Hobson JA (2000) Visual discrimination learning requires sleep after training. Nat Neurosci 3:1237–1238

    CAS  PubMed  Google Scholar 

  • Szymcazk JT (1985) Sleep pattern in the starling (Sturnus vulgaris). Acta Physiol Pol 36:323–331

    Google Scholar 

  • Szymcazk JT (1986) Daily rhythm of sleep-wakefulness in the starling, Sturnus vulgaris. Acta Physiol Pol 37:199–206

    Google Scholar 

  • Talamini LM, Nieuwenhuis ILC, Takashima A, Jensen O (2008) Sleep directly following learning benefits consolidation of spatial associative memory. Learn Mem 15:233–237

    PubMed  Google Scholar 

  • Tchernichovski O, Lints TJ, Deregnaucourt S et al (2004) Studying the song development process: Rationale and methods. Ann NY Acad Sci 1016:348–363

    CAS  PubMed  Google Scholar 

  • Tchernichovski O, Mitra PP, Lints T, Nottebohm F (2001) Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291:2564–2569

    CAS  PubMed  Google Scholar 

  • Terpstra NJ, Bolhuis JJ, Riebel K et al (2005) Localized brain activation specific to auditory memory in a female songbird. J Comp Neurol 494:784–791

    Google Scholar 

  • Theunissen FE, Amin N, Shaevitz SS et al (2004) Song selectivity in the song system and in the auditory forebrain. Ann NY Acad Sci 1016:222–245

    PubMed  Google Scholar 

  • Thompson JV, Gentner TQ (2010) Song recognition learning and stimulus-specific weakening of neural responses in the avian auditory forebrain. J Neurophysiol 103:1785–1797

    PubMed Central  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Tucker M, Hirota Y, Wamsley E et al (2006) A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem 86:241–247

    PubMed  Google Scholar 

  • Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642

    CAS  PubMed  Google Scholar 

  • Walker MP (2005) A refined model of sleep and the time course of memory formation. Behav Brain Sci 28:51–64

    PubMed  Google Scholar 

  • Walker MP, Brakefield T, Morgan A et al (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35:205–211

    CAS  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425:616–620

    CAS  PubMed  Google Scholar 

  • Walker MP, Stickgold R (2006) Sleep, memory, and plasticity. Ann Rev Psychol 57:139–166

    Google Scholar 

  • Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proc Nat Acad Sci USA 107:12676–12681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    CAS  PubMed  Google Scholar 

  • Yu AC, Margoliash D (1996) Temporal hierarchical control of singing in birds. Science 273:1871–1875

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Margoliash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brawn, T.P., Margoliash, D. (2014). A Bird’s Eye View of Sleep-Dependent Memory Consolidation. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_349

Download citation

Publish with us

Policies and ethics